Cayley, Marty and Schreier hypergraphs

  • M. Buratti


Connected Graph Permutation Group Cayley Graph Finite Rank Left Coset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    C. Berge, Graphs and Hypergraphs. North Holland, Amsterdam 1973.Google Scholar
  2. [2]
    N.L. Biggs and A.T. White, Permutation Groups and Combinatorial Structures. Lond. Math. Soc. Lect. Note Series33 (1979).Google Scholar
  3. [3]
    M. Biliotti andG. Micelli, On Translation Transversal Designs. Rend. Sem. Math. Univ. Padova73 (1985), 217–229.MATHMathSciNetGoogle Scholar
  4. [4]
    B. Bollobas, Graph Theory, an Introductory Course. Springer-Verlag, Berlin-Heidelberg-New York 1979MATHGoogle Scholar
  5. [5]
    M. Buratti, Edge-colourings Characterizing a Class of Cayley Graphs and a New Characterization of Hypercubes. Submitted.Google Scholar
  6. [6]
    M. Buratti, Schubert Graphs, Symmetric Groups and Flags of Boolean Lattices. J. of Geometry (to appear).Google Scholar
  7. [7]
    G. Burosch and P.V. Ceccherini, Isometric Embeddings into Cube-hypergraphs. Preprint 1991. Discr. Math, (to appear)Google Scholar
  8. [8]
    P. Corsini, Hypergroupes et groupes ordonnées. Rend. Sem. Univ. Padova48 (1973), 189–204.MATHMathSciNetGoogle Scholar
  9. [9]
    J.L. Gross, Every Connected Graph of Even Degree is a Schreier Coset Graph. J. Combin. Theory Ser. B22 (1977), 227–232.MATHCrossRefGoogle Scholar
  10. [10]
    H. Karzel and G.P. Kist, Kinematic Algebras and Their Geometries. In: R. Kaya et al. (eds.), Rings and Geometry. NATO ASI SeriesC180 (1985), 437–509.Google Scholar
  11. [11]
    M. Koskas, Groupoides, demi-hypergroupes et hypergroupes. J. Math. Pures et Appl.49 (1970).Google Scholar
  12. [12]
    F. Marty, Sur une généralisation de la notion de groupe. 8éme Congres Math. Scandinaves, Stockholm 1934, 45–49.Google Scholar
  13. [13]
    G. Sabidussi, On a Class of Fixed-point Free Graphs. Proc. Amer. Math. Soc.9 (1958), 800–804.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    O. Schreier, Die Untergruppen der freien Gruppen. Abh. Math. Sem. Univ. Hamburg5 (1926), 161–183.CrossRefGoogle Scholar
  15. [15]
    G. Tallini, Ipergruppoidi di Steiner e geometrie combinatorie. In: P Corsini (ed.), Convegno su: Sistemi binari e loro applicazioni. Taormina (ME) 1978, 119–125.Google Scholar
  16. [16]
    B.L. Van Der Waerden, Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk.15 (1927), 212–216.Google Scholar
  17. [17]
    H.P. Yap, Topics in Graph Theory. Cambridge University Press, Cambridge 1986.MATHGoogle Scholar
  18. [18]
    G. Zappa, Partizioni edS-partizioni dei gruppi finiti. Symposia Mathematica, Ist. Naz. di Alta Matem.1 (1968), 85–94.Google Scholar

Copyright information

© Mathematische Seminar 1994

Authors and Affiliations

  • M. Buratti
    • 1
  1. 1.Facoltà di IngegneriaUniversità de L’AquilaPoggio di Roio - L’AquilaItaly

Personalised recommendations