Journal of Nuclear Cardiology

, Volume 1, Issue 3, pp 270–279 | Cite as

Interaction of technetium 99m-labeled teboroxime with red blood cells reduces the compound’s extraction and increases apparent cardiac washout

  • Seth T. Dahlberg
  • Madeleine P. Gilmore
  • Jeffrey A. Leppo
Original Articles



99mTc-labeled teboroxime shows high myocardial extraction in both in vivo animal and in vitro cell culture and isolated heart studies. Whereas in vivo studies show rapid myocardial clearance of teboroxime, in vitro cell culture and isolated heart studies show slower washout comparable to that of201Tl. Binding of teboroxime to blood components may contribute to these conflicting results.

Methods and Results

We measured teboroxime extraction in the isolated blood-perfused rabbit heart after injection in saline solution, brief incubation in red blood cell perfusate, or 4-hour incubation with human red blood cells. Teboroxime in saline solution showed high extraction (Emax=0.89±0.02; Enet=0.69±0.02), whereas brief incubation in perfusate (Emax=0.60±0.06; Enet=0.48±0.05) or prolonged incubation with human red blood cells (Emax=0.43±0.09; Ene=0.38±0.07) resulted in reduced extraction. Teboroxime clearance was similar for all groups and was slower than201Tl clearance. Analysis of total residual cardiac teboroxime (comparable to external imaging) showed that teboroxime clearance was biexponential. Reduced extraction of teboroxime in red blood cells resulted in an increased size of the rapidly clearing (unextracted) fraction, giving the appearance of rapid myocardial washout.


Teboroxime has a high myocardial extraction. Binding to blood components reduces teboroxime extraction and increases the rate of cardiac teboroxime clearance.

Key Words

teboroxime thallium technetium 99m rabbit isolated heart 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kronauge JF, Chiu ML, Cone JS, et al. Comparison of neutral and cationic myocardial perfusion agents: characteristics of accumulation in cultured cells. Nucl Med Biol 1992;19:141–8.Google Scholar
  2. 2.
    Maublant JC, Moins N, Gachon P. Uptake and release of two new Tc-99m labeled myocardial blood flow imaging agents in cultured cardiac cells. Eur J Nucl Med 1989;15:180–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Leppo JA, Meerdink DJ. Comparative myocardial extraction of two technetium-labeled BATO derivatives (SQ30217, SQ32014) and thallium. J Nucl Med 1990;31:67–74.PubMedGoogle Scholar
  4. 4.
    Gray WA, Gewirtz H. Comparison of99mTc-teboroxime with thallium for myocardial imaging in the presence of a coronary artery stenosis. Circulation 1991;84:1796–807.PubMedGoogle Scholar
  5. 5.
    Beanlands R, Muzik O, Nguyen N, Petry N, Schwaiger M. The relationship between myocardial retention of technetium-99m teboroxime and myocardial blood flow. J Am Coll Cardiol 1992;20:712–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Stewart RE, Schwaiger M, Hutchins GD, et al. Myocardial clearance kinetics of technetium-99m-Q30217: a marker of regional myocardial blood flow. J Nucl Med 1990;31:1183–90.PubMedGoogle Scholar
  7. 7.
    Stewart RE, Heyl B, O’Rourke RA, Blumhardt R, Miller DD. Demonstration of differential post-stenotic myocardial technetium-99m-teboroxime clearance kinetics after experimental ischemia and hyperemic stress. J Nucl Med 1991;32:2000–8.PubMedGoogle Scholar
  8. 8.
    Johnson G III, Glover DK, Hebert CB, Okada RD. Early myocardial clearance kinetics of technetium-99m-teboroxime differentiate normal and flow-restricted canine myocardium at rest. J Nucl Med 1993;34:630–6.PubMedGoogle Scholar
  9. 9.
    Marshall RC, Leidholdt EM Jr, Zhang D-Y, Barnett CA. The effect of flow on technetium-99m-teboroxime (SQ30217) and thallium-201 extraction and retention in rabbit heart. J Nucl Med 1991;32:1979–88.PubMedGoogle Scholar
  10. 10.
    Deutsch E, Ketring AR, Libson K, Vanderheyden J-L, Hirth WW. The Noah’s ark experiment: species dependent biodistributions of cationic99mTc complexes. Nucl Med Biol 1989;16:191–232.Google Scholar
  11. 11.
    Gerundini P, Savi A, Gilardi MC, et al. Evaluation in dogs and humans of three potential technetium-99m myocardial perfusion agents. J Nucl Med 1986;27:409–16.PubMedGoogle Scholar
  12. 12.
    Dahlberg ST, Gilmore MP, Siwko R, Leppo JA. Incubation with red blood cells reduces the extraction of technetium-99m teboroxime in the isolated rabbit heart [Abstract]. J Nucl Med 1991;32:910.Google Scholar
  13. 13.
    Narra RK, Nunn AD, Kuczynski BL, Feld T, Wedeking P, Eckelman WC. A neutral technetium-99m complex for myocardial imaging. J Nucl Med 1989;30:1830–7.PubMedGoogle Scholar
  14. 14.
    Leppo JA, Meerdink DJ. Comparison of the myocardial uptake of a technetium-labeled isonitrile analogue and thallium. Circ Res 1989;65:632–9.PubMedGoogle Scholar
  15. 15.
    Hnatowich DJ, Layne WD, Childs RL. The preparation and labeling of DTPA-coupled albumin. Int J Appl Radiat Isot 1982;33:327–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Marshall RC, Leidholdt EM Jr, Zhang D-Y, Barnett CA. Technetium-99m hexakis 2-methoxy-2-isobutyl isonitrile and thallium-201 extraction, washout and retention at varying coronary flow rates in rabbit heart. Circulation 1990;82:998–1007.PubMedGoogle Scholar
  17. 17.
    Bassingthwaighte JB, Holloway GA. Estimation of blood flow with radioactive tracers. Semin Nucl Med 1976;6:141–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Bassingthwaighte JB, Raymond GM, Chan JI. Principles of tracer kinetics. In: Zaret BL, Beller GA, eds. Nuclear cardiology: state of the art and future directions. St Louis: Mosby-Year Book, 1993:3–23.Google Scholar
  19. 19.
    Kuikka JT, Bassingthwaighte JB, Henrich MM, Feinendegen Le. Mathematical modeling in nuclear medicine. Eur J Nucl Med 1991;18:351–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Bassingthwaighte JB, Goresky CA. Modeling in the analysis of solute and water exchange in the microvasculature. In: Renkin EM, Michel CC, eds. Handbook of physiology: the cardiovascular system, vol 4: the microcirculation. Bethesda, Maryland: American Physiological Society, 1984:549–626.Google Scholar
  21. 21.
    Bassingthwaighte JB. Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: flow estimation from tracer washout. Prog Cardiovasc Dis 1977;20:165–89.PubMedCrossRefGoogle Scholar
  22. 22.
    Bassingthwaighte JB, Chinard FP, Crone C, et al. Terminology for mass transport and exchange. Am J Physiol 1986;250:H539–45.PubMedGoogle Scholar
  23. 23.
    Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977;56:188–91.PubMedGoogle Scholar
  24. 24.
    Grunwald AM, Watson DD, Holzgrefe HH Jr, Irving JF, Beller GA. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation 1981;64:610–8.PubMedGoogle Scholar
  25. 25.
    Rumsey WL, Rosenspire KC, Nunn AD. Myocardial extraction of teboroxime: effects of teboroxime interaction with blood. J Nucl Med 1992;33:94–101.PubMedGoogle Scholar
  26. 26.
    McCall D, Zimmer LJ, Katz AM. Kinetics of thallium exchange in cultured rat myocardial cells. Circ Res 1985;56:370–6.PubMedGoogle Scholar
  27. 27.
    Stone JA, Dawood F, Wen W-H, McLaughlin PR, Liu PP. Is the myocardial uptake of teboroxime viability dependent? [Abstract]. Circulation 1992;86:I-707.Google Scholar
  28. 28.
    Beanlands RS, Palser A, Hartman N, Aung M, Ruddy TD. Are the kinetics of Tc-99m-teboroxime altered in the postischemic myocardium? (Abstract). Circulation 1993;88:249.Google Scholar
  29. 29.
    Okada RD, Jacobs ML, Daggett WM, et al. Thallium-201 kinetics in nonischemic canine myocardium. Circulation 1982;65:70–7.PubMedGoogle Scholar
  30. 30.
    Gewirtz H. Differential myocardial washout of technetium-99m-teboroxime: mechanism and significance. J Nucl Med 1991;32:2009–11.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 1994

Authors and Affiliations

  • Seth T. Dahlberg
    • 1
  • Madeleine P. Gilmore
    • 1
  • Jeffrey A. Leppo
    • 1
  1. 1.From the Department of Nuclear Medicine and Division of CardiologyUniversity of Massachusetts Medical CenterWorcester

Personalised recommendations