Advertisement

Journal of Nuclear Cardiology

, Volume 1, Supplement 2, pp S34–S39 | Cite as

Investigation of myocardial metabolism for the study of the pathophysiology of cardiac disease

  • Paolo G. Camici
Article

Abstract

Many variables, including food ingestion, circulating hormone, and the cardiac work load, affect myocardial metabolism. Important changes in myocardial metabolism are associated with myocardial ischemia. The study of myocardial metabolism by means of different invasive and noninvasive techniques allows a better understanding of both cardiac physiology and pathophysiology in humans.

Key Words

coronary artery disease angiography myocardial metabolism positron emission tomography 

References

  1. 1.
    Bing RJ. The metabolism of the heart. In: Harvey lecture series 50. Orlando, Florida: Academic Press, 1954:27–70.Google Scholar
  2. 2.
    Ganz W, Tamura K, Marcus HS, Donoso R, Yoshida S, Swan HJC. Measurement of coronary sinus blood flow by continuous and intermittent exercise to exhaustion. J Appl Physiol 1971;144:181–95.Google Scholar
  3. 3.
    Pepine CJ, Metha JM, Webster WW, Nichols WW. In vivo validation of a thermodilution method to determine regional left ventricular blood flow in patients with coronary artery disease. Circulation 1978;58:795–802.PubMedGoogle Scholar
  4. 4.
    Camici PG, Marraccini P, Marzilli M, et al. Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans. Am J Physiol 1989;257:E309–17.PubMedGoogle Scholar
  5. 5.
    Gertz EW, Wisneski JA, Neese R, Bristow JD, Searle GL, Hanlon JT. Myocardial lactate metabolism: evidence of lactate release during net chemical extraction in man. Circulation 1981;63:1273–9.PubMedGoogle Scholar
  6. 6.
    Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism 1988;37:287–301.PubMedCrossRefGoogle Scholar
  7. 7.
    Phelps ME, Mazziotta JC, Schelbert HR. Positron emission tomography and autoradiography: principles and applications for the brain and the heart. New York: Raven Press, 1986.Google Scholar
  8. 8.
    Schelbert HR, Schwaiger M. PET studies of the heart. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron emission tomography and autoradiography: principles and applications for the brain and the heart. New York: Raven Press, 1986:581–662.Google Scholar
  9. 9.
    Schelbert HR, Henze E, Schon HR, et al. C-11 palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography, IV: in vivo demonstration of impaired fatty acid oxidation in acute myocardial ischemia. Am Heart J 1983;106:736–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Cir Res 1988;63:628–34.Google Scholar
  11. 11.
    Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990;81:1594–605.PubMedGoogle Scholar
  12. 12.
    Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 1988;12:1054–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Buxton DB, Nienaber CA, Luxen A, et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1-11C]acetate and dynamic positron emission tomography. Circulation 1989;79:134–42.PubMedGoogle Scholar
  14. 14.
    Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C]acetate and dynamic positron tomography. Circulation 1989;80:863–72.PubMedGoogle Scholar
  15. 15.
    Walsh MN, Geltman EM, Brown MA, et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 1989;30:1798–808.PubMedGoogle Scholar
  16. 16.
    Iida H, Rhodes CG, Yamamoto Y, Jones T, De Silva R, Araujo LI. Quantitative measurement of myocardial metabolic rate of oxygen (MMRO2) in man using positron emission tomography. Circulation 1990;82:III-614.Google Scholar
  17. 17.
    De Silva R, Yamamoto Y, Rhodes CG, Iida H, Maseri A, Jones T. Non-invasive quantification of regional myocardial oxygen consumption in anaesthetized greyhounds [Abstract]. J Physiol (Lond) 1992;446:219P.Google Scholar
  18. 18.
    Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan C-N, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-deoxy-2-fluoro-d-glucose. J Nucl Med 1978;19:1154–61.PubMedGoogle Scholar
  19. 19.
    Huang SC, Phelps ME. Principles of tracer kinetic modeling in positron emission tomography and autoradiography. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press, 1986:287–346.Google Scholar
  20. 20.
    Camici PG, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and applications to imaging by positron emission tomography. Progr Cariovasc Dis 1989;32:217–38.CrossRefGoogle Scholar
  21. 21.
    Ferrammini E, Samtoro D, Bomadomma R, Natali A, Parodi O, Camici PG. Metabolic and hemodynamic effects of insulin on human heart. Am J Physiol 1993;27:E308–15.Google Scholar
  22. 22.
    Camici PG, Marraccini P, Lorenzoni R, et al. Metabolic markers of stress-induced myocardial ischemia. Circulation 1991;83(suppl):III8–13.PubMedGoogle Scholar
  23. 23.
    Grover-McKay M, Schelbert HR, Schwaiger M, et al. Identification of impaired metabolic reserve by atrial pacing in patients with significant coronary artery stenosis. Circulation 1986;74:281–92.PubMedGoogle Scholar
  24. 24.
    Camici PG, Araujo LI, Spinks T, et al. Increased uptake of F18-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 1986;74:81–8.PubMedGoogle Scholar
  25. 25.
    Araujo LI, Camici PG, Spinks T, Jones T, Maseri A. Beneficial effects of nitrates on myocardial glucose utilization in unstable angina pectoris. Am J Cardiol 1987;62:26H-30H.CrossRefGoogle Scholar
  26. 26.
    Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography,18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1981;64:766–78.Google Scholar
  27. 27.
    Tillisch J, Brunken R, Schwaiger M, Mandelkern M, Phelps M, Schelbert HR. Reversal of cardiac wall motion abnormalities predicted by using positron emission tomography. N Engl J Med 1985;314:884–8.Google Scholar
  28. 28.
    Bonow RO, Berman DS, Gibbons RJ, et al. Cardiac positron emission tomography: a report for health officials from the Committee on Advance Cardiac Imaging and Technology of the Council on Clinical Cardiology, American Heart Association. Circulation 1991;84:447–54.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 1994

Authors and Affiliations

  • Paolo G. Camici
    • 1
  1. 1.From the Medical Research Council Cyclotron Unit and Royal Postgraduate Medical SchoolHammersmith HospitalLondonUK

Personalised recommendations