Advertisement

Current Pain and Headache Reports

, Volume 1, Issue 1, pp 10–22 | Cite as

Cholinergic mechanisms and antinociception

  • Alexander Nemirovsky
  • David Niv
Article

Abstract

This article summarizes current knowledge regarding the involvement of cholinergic mechanisms of the central nervous system in transmission and modulation of nociceptive information, with emphasis on the spinal nociceptive processing. Major topics reviewed include the antinociceptive activity of cholinergic drugs, experimental evidence of the presence of the central cholinergic systems, subclasses of muscarinic receptors involved in antinociceptive effects, and a possible physiologic role of the central cholinergic mechanisms.

Keywords

Dorsal Horn Muscarinic Receptor Carbachol Neostigmine Antinociceptive Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Flodmark S, Wramner T:The analgetic action of morphine, eserine and prostigmine studied by a modified Hardy-Wolff-Goodell method.Acta Physiol Scand 1945,9:88–96.CrossRefGoogle Scholar
  2. 2.
    Green PG, Kitchen I:Antinociception opioids and the cholinergic system.Prog Neurbiol 1986,26:119–146.CrossRefGoogle Scholar
  3. 3.
    Handley SL, Spencer PSI:Analgesic activity after intracerebral injection in the mouse.Br J Pharmacol 1969,35:361–363.Google Scholar
  4. 4.
    Pedigo NW, Dewey WL, Harris LS:Determination and characterization of the antinociceptive activity of intraventricularly administered acetylcholine in mice.J Pharmacol Exp Ther 1975,193:845–852. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  5. 5.
    Widman M, Rosin D, Dewey WL:Effects of divalent cations, lantanum, cation chelators and an ionopfore on acetylcholine antinociception.J Pharmacol Exp Ther 1978,205:311–318. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  6. 6.
    Pedigo NW, Dewey WL:Acetylcholine-induced antinociception: comparisons to opiate analgesia.In InCholinergic Mechanisms. New York: Plenum Press; 1980:795–807.Google Scholar
  7. 7.
    Pedigo NW, Dewey WL:Comparison of the antinociceptive activity of intraventriculary administered acetylcholine to narcotic antinociception.Neurosci Lett 1981,26:85–90. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  8. 8.
    Metys J, Wagner N, Metysova J,et al.:Studies of the central antinociceptive action of cholinomimetic agents.Int J Neuropharmacol 1969,8:413–425. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  9. 9.
    Oliveira MA, Prado WA:Antinociception and behavioral manifestations induced by intracerebroventricular or intra-amygdaloid administration of cholinergic agonists in the rat.Pain 1994,57:383–391. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  10. 10.
    Brodie MS, Proudfit HK:Hypoalgesia induced by the local injection of carbachol into the nucleus raphe magnus.Brain Res 1984,291:337–342. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  11. 11.
    Katayama Y, DeWitt DS, Becker DP,et al.:Behavioral evidence for a cholinoceptive pontine inhibitory area: descending control of spinal motor output and sensory input.Brain Res 1984,296:241–262. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  12. 12.
    Katayama Y, Watkins LR, Becker DP,et al.:Non-opiate analgesia induced by carbachol microinjection into the pontine parabrachial region of the cat.Brain Res 1984,296:263–283. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  13. 13.
    Hayes RL, Katayama Y, Watkin LR,et al.:Bilateral lesions of dorsolateral funiculus of the cat spinal cord: effects on basal nociceptive reflexes and nociceptive suppression produced by cholinergic activation of the pontine parabrachial region.Brain Res 1984,311:267–280. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  14. 14.
    Terenzi MG, Prado WA:Antinociception elicited by electrical or chemical stimulation of the rat habenular complex and its sensitivity to systemic antagonists.Brain Res 1990,535:18–24. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  15. 15.
    Harris LS, Dewey WL, Howes JF:The tail flick test, cholinergic mechanisms.Fed Proc 1968,27:753.Google Scholar
  16. 16.
    Harris LS, Dewey WL, Howes JF,et al.:Narcotic antagonist analgesics: interactions with cholinergic systems.J Pharmacol Exp Ther 1969,169:17–22. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  17. 17.
    Howes JF, Harris LS, Dewey WL,et al.:Brain acetylcholine levels and inhibition of the tail-flick reflex in mice.J Pharmacol Exp Ther 1969,169:23–28. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  18. 18.
    Ireson JD:Opioid and muscarinic antinociception.Br J Pharmacol 1969,37:504–513.Google Scholar
  19. 19.
    Ireson JD:A comparison of the antinociceptive actions of cholinomimetics and morphine-like drugs.Br J Pharmacol 1970,40:92–101. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  20. 20.
    Leslie GB:The effect of anti-Parkinson drugs on oxotremorine-induced analgesia in mice.J Pharm Pharmacol 1969,21:248–250. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  21. 21.
    Karlen B:Chemical and biological studies of tremorine, oxotremorine and oxotremorine antagonists.Acta Pharm Suec 1970,7:169–200. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  22. 22.
    Pleuvry BJ, Tobias MA:Comparison of the antinociceptive activities of physiostigmine, oxotremorine and morphine in the mouse.Br J Pharmacol 1971,43:706–714. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  23. 23.
    Cox B, Tha SJ:The antinociceptive activities of oxotremorine, physostigmine and dyflos.J Pharm Pharmacol 1972,24:547–551. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  24. 24.
    Nistri A, Pepeu G, Gammelli E,et al.:Effects of morphine on brain and spinal acetylcholine levels and nociceptive threshold in the frog.Brain Res 1974,80:199–209. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  25. 25.
    Slater P:Effect of 6-hydroxydopamine on some actions of tremorine and oxotremorine.Eur J Pharmacol 1974,25:130–137. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  26. 26.
    Slater P:The effect of 6-hydroxydopamine on the antinociceptive action of oxotremorine.Psychopharmacology 1981,74:365–368. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  27. 27.
    Paazlov G, Paazlov P:Antinociceptive action of oxotremorine and regional turnover of rat brain noradrenaline, dopamine, and 5-HT.Eur J Pharmacol 1975,31:261–272. ▸ View thePubMed notation for this reference.CrossRefGoogle Scholar
  28. 28.
    Barar FSK, Madan BR:Tremorine-oxotremorine-induced tremor, hypothermia and analgesia, and physostigmine toxicity in mice after pretreatment with beta-adrenoceptor antagonists.J Pharm Pharmacol 1976,28:286–289. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  29. 29.
    Simon P, Chermat R, Boissier JR:Interaction of atropine or methylatropinium with four effects of two cholinergic drugs.Experientia 1976,32:371–372. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  30. 30.
    Bartolini A, Bartolini R, Aiello-Malmberg P,et al.:New data concerning the interaction between cholinergic enkephalinergic and serotoninergic systems during analgesia.In InAdv Pharmac Res Prac. Edited by Furst S. Oxford; New York: Pergamon Press; 1979:171–182.Google Scholar
  31. 31.
    Ben-Sreti MM, Sewell RDE:Stereospecific inhibition of oxotremorine-induced antinociception by (+)-isomers of opioid antagonists: comparison with opioid receptor agonist.J Pharm Pharmacol 1982,34:501–505. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  32. 32.
    Bill DJ, Hartley JE, Stephens RJ,et al.:The antinociceptive activity of meptazinol depends on both opiate and cholinergic mechanisms.Br J Pharmacol 1983,79:191–199. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  33. 33.
    Lewis JW, Cannon JT, Liebeskind JC:Involvement of central muscarinic cholinergic mechanisms in opioid stress analgesia.Brain Res 1983,270:289–293. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  34. 34.
    Gower AJ:Effects of acetylcholine agonists and antagonists on yawning and analgesia in the rat.Eur J Pharmacol 1987,139:79–89. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  35. 35.
    Hamm RJ, Knisely JS:Developmental differences in the analgesia produced by the central cholinergic system.Dev Psychobiol 1987,20:345–354. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  36. 36.
    Pavone F, Consorti D, Fagioli S:Developmental differences of antinociceptive effects of oxotremorine in two inbred strains of mice.Dev Brain Res 1989,49:156–160.CrossRefGoogle Scholar
  37. 37.
    Badiani A, Pavone F:Reduction of oxotremorine-induced analgesia after chronic but not acute restrain stress.Psychopharmacology (Berlin) 1991,104:57–61.CrossRefGoogle Scholar
  38. 38.
    Herz A:Actions of arecoline on the central nervous system.Naunyn-Schmiedebergs Arch Exptl Pathologie Pharmacologie 1962,242:414.Google Scholar
  39. 39.
    Houser VP:Modulation of the aversive qualities of shock through a central inhibitory cholinergic system in the rat.Pharmacol Biochem Behav 1976,4:561–568. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  40. 40.
    Aloisi P Scotti de Carolis A, Longo VC:Antinociceptive action of cholinomimetics evaluated with the method of the return of corneal anesthesia induced with procaine.In InCholinergic Mechanisms: Phylogenetic Aspects, Central and Peripheral Synapses, and Clinical Significance. Edited by Giancarlo P, Ladinsky H, New York: Plenum Press; 1981: 833–839.Google Scholar
  41. 41.
    Koehn GL, Lazaron LM, Moon BH:Role of pituitary opioid peptides in physostigmine- or arecoline-induced antinociception in rats.Fed Proc 1981,40:283.Google Scholar
  42. 42.
    Dayton HE, Garret RL:Production of analgesia by cholinergic drugs.Proc Soc Exp Biol Med 1973,142:1011–1013. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  43. 43.
    Malec D, Langwinski R:Cholinergic influence on opioid activity in rats.Polish Journal of Pharmacology and Pharmacy 1982,34:85–92. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  44. 44.
    Butler PD, Bodnar RJ:Neuromodulatory effects of TRH upon swim and cholinergic mechanisms analgesia.Peptides 1987,8:299–307. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  45. 45.
    Kaakkola S, Ahtee L:Effect of muscarinic cholinergic drugs on morphine-induced catalepsy, antinociception and changes in brain dopamine metabolism.Psychopharmacology 1977,52:7–15. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  46. 46.
    Further studies on the role of cholinergic mechanisms in the development of increased naloxone potency in mice.Eur J Pharmacol 1979,56:1–2.Google Scholar
  47. 47.
    Saxena PN:Mechanism of cholinergic potentiation of morphine analgesia.Ind J Med Res 1958,46:653–658.Google Scholar
  48. 48.
    Pert A:The cholinergic system and nociception in the primate: interactions with morphine.Psychopharmacologica (Berlin) 1975,44:131–137.CrossRefGoogle Scholar
  49. 49.
    Chiang TS, Leaders FE:Antagonism of aceclidine-induced tremor, analgesia, hypothermia, salivation and lacrimation by some pharmacological agents.Arch Int Pharmacodyn Ther 1971,189:295–302. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  50. 50.
    Sethy VH, Naik SR, Sheth UK:Effects of drugs influencing amine synthesis on the analgesic action of trem orine.Psychopharmacologia 1971,19:73–80. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaariainen J:Effects of GABAergic drugs on the catalepsy, striatal homovanillic acid increase and antino ciception caused by pilocarpine in rats.Acta Pharm Toxicol 1977,40:188–192.Google Scholar
  52. 52.
    Naik SR:Effect of muscimol, a central GABA receptor agonist, on the catalepsy, striatal hom ovanillic acid increase and analgesia induced by pilocarpine in rats.Psychopharmacology 1981,74:393–394. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  53. 53.
    Lipman JJ, Spencer PSJ:A comparison of muscarinic cholinergic in volvement in the antinociceptive effects of morphine and clonidine in the mouse.Eur J Pharmacol 1980,64:249–258. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  54. 54.
    Cozanitis DA, Friedman T, Furst S:Study of the analgesic effect of galantamine, a cholinesterase inhibitor.Arch Int Pharmacodyn Ther 1983,266:229–238. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  55. 55.
    Spaulding TC, Ma Ming G, Dunn RW,et al:Lack of antinociceptive activity of clonidine in two pain models: comparison with other analgesics and CNS active drugs.Drug Dev Res 1984,4:217–222.CrossRefGoogle Scholar
  56. 56.
    Lawrence D, Livingston A:The effect of physostigmine and neostigmine on ketamine anaesthesia and analgesia.Br J Pharmacol 1979,67:427P.Google Scholar
  57. 57.
    Romano J, King J:Naloxone differentially affects the analgesic actions of physostigmine on three behavior measures of nociception.Soc Neurosci Abs 1981,7:879.Google Scholar
  58. 58.
    Romano J, Shih TM:Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming.Neuropharmacology 1983,22:827–833. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  59. 59.
    Bhargava HN, Way EL:Acetylcholinesterase inhibition and morphine effects in morphine tolerant and dependent mice.J Pharmacol Exp Ther 1972,183:31–40. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  60. 60.
    Mudgill L, Friedhoff AJ, Tobey J:Effect of intraventricular administration of epinephrine, no repinephrine, dopamine, acetylcholine and physostigmine on morphine analgesia in mice.Archs Int Pharmacodyn Ther 1974,210: 85–91.Google Scholar
  61. 61.
    Fujimoto JM, Rady JJ:Intracerebroven tricular physostigmine-induced analgesia: enhancement by naloxone, beta-funaltrexamine and norbinaltorphimine and antagonism by dynorphine A (1–17).J Pharmacol Exp Ther 1989,251:1045–1052. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  62. 62.
    Phan DV, Doda M, Bite A,et al.:Antinociceptive activity of nicotine.Acta Physiol Hung 1973,44:85–93.Google Scholar
  63. 63.
    Tripathi HL, Martin BR, Aceto MD:Nicotine-induced antinociception in rats and mice: correlation with nicotine brain levels,J Pharmacol Exp Ther 1982,221:91–96. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  64. 64.
    Damaj MI, Welch SP, Martin BR:Involvement, of calcium and L-type channels in nicotine-induced antinociception.J Pharmacol Exp Ther 1993,266:1330–1338. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  65. 65.
    Iwamoto ET:Antinociception after nicotine administration into the mesopontine tegmentum of rats: evidence for muscarinic action.J Pharmacol Exp Ther 1989,251:412–421. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  66. 66.
    Iwamoto ET, Marion L:Adrenergic, serotoninergic and cholinergic components of nicotinic antinociception in rats.J Pharmacol Exp Ther 1993,265:777–789. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  67. 67.
    Ghelardini C, Malmberg-Aiello P, Giotti A,et al.:Investigation into atropine-induced antino ciception.Br J Pharmacol 1990,101:49–54. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  68. 68.
    Bartolini A, Galli A, Gheraldini C,et al.:Antinociception induced by systemic administration of local anesthetics depends on a central cholinegic mechanism.Br J Pharmacol 1987,92:711–721. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  69. 69.
    Ghelardini C, Meini S, Malmberg-Aiello P.,et al.:Studies on the analgesic mechanism of some antiarrhythmic drugs.Pharmacol Res Commun 1988,20 (suppl 1):59–60.Google Scholar
  70. 70.
    Taylor JE, Yaksh TL, Richelson E:Agonist regulation of muscarinic acetylcholine receptors in rat spinal cord.J Neurochem 1982,39:521–524. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  71. 71.
    Dirksen R, Nijhuis GMM:The relevance of cholinergic transmission at the spinal level to opiate effectiveness.Eur J Pharmacol 1983,9:215–221.CrossRefGoogle Scholar
  72. 72.
    Yaksh TL, Dirksen R, Harty GJ:Antinociceptive effects of intrathecal injection cholinomimetic drugs in the rat and cat.Eur J Pharmacol 1985,117:81–88. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  73. 73.
    Nemirovsky A:The effect of M-cholinomimetics on nociceptive transmission in the spinal cord.Farmakologiya i Toksikologiya 1985,48:36–39.Google Scholar
  74. 74.
    Nemirovsky A:The effect of anticholinesterases on nociceptive transmission in the spinal cord.Farmakologiya i Toksikologiya 1988,51:12–14.Google Scholar
  75. 75.
    Kharkevich DA, Nemirovsky A:Antinociceptive activity of muscarinomimetic agents.Ann Ist Super Sanita 1990,26:11–16. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  76. 76.
    Fields HL:Pain pathways in the central nervous system. InPain. New York: McGraw-Hill; 1987:41–78.Google Scholar
  77. 77.
    Gillberg PG, Hartvig P, Gordh T,et al.:Behavioral effects after intrathecal administration of cholinergic receptor agonists in the rat.Psychopharmacology 1990,100:464–469. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  78. 78.
    Smith MD, Yang X,et al.:Antinociceptive effect of spinal cholinergic stimulation: interaction with substance P.Life Sci 1989,45:1255–1261. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  79. 79.
    Yaksh TL, Grafe MR, Malkmus S,et al.:Studies on the safety of chronically administered neostigmine methylsulfate in rats and dogs.Anesthesiology 1995,82:412–427. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  80. 80.
    Bouaziz H, Eisenach JC, Ting C.:Postoperative analgesic effects with intrathecal neostigmine in sheep [abstract].Anesthesiology 1994,81:A930.CrossRefGoogle Scholar
  81. 81.
    Slaughter D, Parsons JC, Munal HD:New clinical aspects of analgesic action of morphine.JAMA 1940,115:2058–2060.Google Scholar
  82. 82.
    Sitaram N, Buchsbaum MS, Gillin JC:Physostigmine analgesia and somatosensory evoked responses in man.Eur J Pharmacol 1977,42:285–290. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  83. 83.
    Weinstock M, Davidson JT, Rosin AJ,et al.:Effect of physostigmine on morphine-induced postoperative pain and somnolence.Br J Anaesthesiol 1982,54:429–432.CrossRefGoogle Scholar
  84. 84.
    Petersson J, Gordh TE, Hartvig P,et al.:A double-blind trial of the analgesic properties of physostigmine in postoperative patients.Acta Anesthesiol Scand 1986,30:283–288.CrossRefGoogle Scholar
  85. 85.
    Hood DD, Eisenach JC:Phase I safety assessment of spinal neostigmine in volunteers [abstract].Anesthesiology 1994,81: A926.CrossRefGoogle Scholar
  86. 86.
    Hood DD, Eisenach JC:Side effects and analgesia from spinal neostigmine injected through a whitacre needle [abstract].Anesthesiology 1994,81:A927.CrossRefGoogle Scholar
  87. 87.
    Of importance Hood DD, Eisenach JC, Tuttle R:Phase I safety assessment of intrathecal neostigmine methylsulfate in humans.Anesthesiology 1995,82:331–343. The first study that shows the analgesic effect of anticholinesterase neostigmine a dministered spinally to humans. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  88. 88.
    Kasa P:The cholinergic systems in brain and spinal cord.Prog Neurobiol 1986,26:211–272. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  89. 89.
    Semba K, Fibiger HC:Organization of central cholinergic systems.Prog Brain Res 1989,79:37–63.PubMedCrossRefGoogle Scholar
  90. 90.
    Human brain cholinergic pathways.Prog Brain Res 1990,84:231–241.Google Scholar
  91. 91.
    Woolf NJ:Cholinergic systems in mammalian brain and spinal cord.Prog Neurobiol 1991,37:475–524. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  92. 92.
    Brodie MS, Proudfit HK:Antinociception induced by local injections of carbachol into the nucleus raphe magnus in rats: alteration by intrathecal injection of monoaminergic antagonists.Brain Res 1985,371:70–79.CrossRefGoogle Scholar
  93. 93.
    Woolf NJ, Butcher LL:Cholinergic systems in the rat brain. IV. Descending projections of the pontomesencephalic tegmentum.Brain Res Bull 1989,23:519–540. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  94. 94.
    Scatton B, Dubois A, Javoy-Agid F.,et al.:Autoradiographic localization of muscarinic cholinergic receptors at various segmental levels of the human spinal cord.Neurosci Lett 1984,49:239–245. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  95. 95.
    Wamsley JK, Zarbin MA, Kuhar MJ:Distribution of muscarinic cholinergic high and low affinity against binding sites: a light microscope autoradiographic study.Brain Res Bull 1984,12:233–243. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  96. 96.
    Gillberg PG, Aquilonius SM:Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography: changes in amyotrophic lateral sclerosis.Acta Neurol Scand 1985,72:299–306. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  97. 97.
    Seybold VS:Distribution of histaminergic, muscarinic and serotonergic binding sites in cat spinal cord with emphasis on the region surrounding the central canal.Brain Res 1985,342:291–296. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  98. 98.
    Villiger JW, Faull RLM:Muscarinic cholinergic receptors in the human spinal cord: differential localisation of [ 3H] pirenzepine and [3H] quinuclidinylbenzilate binding sites.Brain Res 1985,345:196–199. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  99. 99.
    Gillberg PG, d’Argy R, Aquilonius SM:Autoradiographic distribution of [ 3H] acetylcholine binding sites in the cervical spinal cord of man and some other species.Neurosci Lett 1988,90:197–202. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  100. 100.
    Quirion R, Araujo D, Regenold W,et al.:Characterisation and quantitative autoradiographic distribution of [ 3H] acetylcholine muscarinic receptors in mammalian brain: apparent labeling of an M2-like receptor sub-type.Neuroscience 1989,29:271–289. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  101. 101.
    Perry EK, Smith CJ, Perry RH,et al.:Regional distribution of muscarinic and nicotinic cholinergic receptor binding activities in the human brain.J. Chem Neuroanat 1989,2:189–199. ▸ View thePub Med notation for this reference.PubMedGoogle Scholar
  102. 102.
    Yamamura HI, Wamsley JK, Deshmukh P,et al.:Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brain stem and spinal cord of the rat using [ 3H] prienzepine.Eu J Pharmacol 1983;91:147–149. ▸ View thePub Med notation for this reference.CrossRefGoogle Scholar
  103. 103.
    Bouchenafa O, Livingston A:The autoradiographic binding of [ 3H] quinuclidinyl benzilate to muscarinic receptors in the spinal cord of the sheep.J Vet Pharmacol Ther 1991,14:345–350. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  104. 104.
    Gillberg PG, Askmark H:Changes in cholinergic and opioid receptors in the rat spinal cord, dorsal root and sciatic nerve after ventral and dorsal root lesion.J Neural Transm 1991,85:31–39.CrossRefGoogle Scholar
  105. 105.
    Gillberg PG, Wiksten B:Effects of spinal cord lesions and rhizotomies on cholinergic and opiate receptor binding sites in rat spinal cord.Acta Physiol Scand 1986,126:575–582. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  106. 106.
    Orsetti M, Fundaro A, Molinego L:Acetylcholine distribution in the spinal cord of the rat.Boll Soc Ital Biol Sper 1979,55:799–803. ▸ View thePub Med notation for this reference.PubMedGoogle Scholar
  107. 107.
    Takahashi Y, Kushiya E, Araki K,et al.:Acetylcholine system in the isolated ventral and dorsal horn neurones from bovine spinal cord.Neurosci Lett 1980,18:261–266. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  108. 108.
    Nagata T, Okuya M, Watanabe R,et al.:Regional distribution of cholinergic neurons in human spinal cord transections in the patients with and without motor neurone disease.Brain Res 1982,244:223–229. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  109. 109.
    Barber RP, Phelps PE, Houser GR,et al.:The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study.J Comp Neurol 1984,229:329–346. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  110. 110.
    Phelps PE, Barber RP, Houser CR,et al.:Postnatal development of neurons containing choline acetyltransferase in rat spinal cord: an immunocytochemical study.J Comp Neurol 1984,229:347–361. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  111. 111.
    Borges LF, Iversen SD:Topography of choline acetyltransferase immunoreactive neurones and fibers in the rat spinal cord.Brain Res 1986,362:140–148. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  112. 112.
    Ribeiro-da-Silva A, Cuello AC:Choline acetyltransferase-immunoreactive profiles are presynaptic to primary sensory fibers in the rat superficial dorsal horn.J Comp Neurol 1990,295:370–384. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  113. 113.
    Kanazava J, Sutoo D, Oshima J,et al.:Effect of transection on choline acetyltransferase, thyrotropin releasing hormone and substance P in the cat cervical spinal cord.Neurosci Lett 1979,13:325–330. ▸ View thePub Med notation for this reference.CrossRefGoogle Scholar
  114. 114.
    Bowker RM, Westlund KN, Sullivan MC,et al.:Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex.Brain Res 1983,288:33–48. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  115. 115.
    Jones BE, Pare M, Beaudet A:Retrograde labeling of neurones in the brain stem following injections of [ 3H] choline into the rat spinal cord.Neuroscience 1986,18:901–916. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  116. 116.
    Sherriff FE, Henderson Z, Morrison JF:Further evidence for the absence of a descending cholinergic projection from the brainstem to the spinal cord in the rat.Neurosci Lett 1991,128:52–56. ▸ View thePub Med notation for this reference.PubMedCrossRefGoogle Scholar
  117. 117.
    Sherriff FE, Henderson Z:A cholinergic propriospinal innervation of the rat spinal cord.Brain Res 1994,634:159–154. ▸ View thePub Med notation for this reference.CrossRefGoogle Scholar
  118. 118.
    Fugita K, Nagata Y.:Effects of dorsal root section and occlusion of dorsal spinal artery on the neurotransmitter candidates in rat spinal cord.Neurochem Res 1989,14:399–404. ▸ View thePubMed notation for this reference.CrossRefGoogle Scholar
  119. 119.
    Odutola AB:The organization of cholinesterase-containing systems of the monkey spinal cord.Brain Res 1972,39:353–368. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  120. 120.
    McGeer PL, McGeer EG, Singh VR,et al.:Choline acetyltransferase localization in the central nervous system by immunohistochemistry.Brain Res 1974,81:373–379. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  121. 121.
    Evidence for the involvement of a descending cholinergic pathway in systemic morphine analgesia.Brain Res 1989,478:293–300.Google Scholar
  122. 122.
    Zhou M, Gebhart GF:Spinal cholinergic and monoaminergic receptors mediate descending inhibition from the nucleus reticularis gigantocellularis and gigantocellularis pars alpha in the rat.Brain Res 1990,535:67–78. ▸ View thePubMed notation for this reference.CrossRefGoogle Scholar
  123. 123.
    Zhou M, Gebhart GF:Tonic cholinergic inhibition of spinal mechanical transmission.Pain 1991,46:211–222. ▸ View thePubMed notation for this reference.CrossRefGoogle Scholar
  124. 124.
    Phillis JW:Pharmacological studies on neurones in the brain and spinal cord. Part I. Cholinergic mechanisms.In InThe Pharmacology of Synapses. Oxford: Pergamon Press; 1970: 147–185.Google Scholar
  125. 125.
    Zieglgansberger W, Reiter C:A cholinergic mechanism in the spinal cord of cats.Neuropharmacology 1974,13:519–527. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  126. 126.
    Myslinski NR, Randic M:Responses of identified spinal neurones to acetylcholine applied by micro-electrophoresis.J Physiol 1977,269:195–219. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  127. 127.
    Urban L, Willets J, Murase K,et al.:Cholinergic effects on spinal dorsal horn neurons in vitro: an intracellular study.Brain Res 1989,500:12–20. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  128. 128.
    Bleazard L, Morris R:The effect of cholinoceptor agonists and antagonists on C-fiber evoked responses in the substantia gelationsa of neonatal rat spinal cord slices.Br J Pharmacol 1993,110:1061–1066. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  129. 129.
    Koketsu K, Karczmar AG, Kitamura R:Acetylcholine depolarization of the dorsal root nerve terminals in the amphibian spinal cord.Int J Neuropharmacol 1969,8:329–336. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  130. 130.
    Gordh JT, Jansson I, Hartvig P,et al.:Interactions between noradrenergic and cholinergic mechanisms involved in spinal nociceptive processing.Acta Anesthesiol Scand 1989,33:39–47.CrossRefGoogle Scholar
  131. 131.
    Gillberg PG, Aksmark H, Aquilonius SM:Spinal cholinergic mechanisms.Prog Brain Res 1990,84:361–370. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  132. 132.
    Eisenach JC:Cerebrospinal fluid (CSF) pharmacodynamics and possible cholinergic mechanism of epidural clonidine in humans [abstract].Anesthesiology 1992,77:A870.CrossRefGoogle Scholar
  133. 133.
    Detweiler DJ, Eisenach JC, Tong C,et al.:A cholinergic interaction in alpha 2-adrenoceptor-mediated antinociception in sheep.J. Pharmacol Exp Ther 1993,265:536–542. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  134. 134.
    Of importance Naguib M, Yaksh TL:Antinociceptive effects of spinal cholinesterase inhibition and isobolographic analysis of the interaction with mu- and alpha 2-receptor systems.Anesthesiology 1994,80:1338–1348. Opioid-cholinergic interaction at the spinal cord level was analyzed with isobolographic method, and supra-additive nature of this interaction was proved. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  135. 135.
    Bartolini A, Ghelardini C, Gualtieri F,et al.:I.c.v. injected AFDX-116 induces analgesia only when administered at very low doses.TIPS 1989, (Suppl IV):99.Google Scholar
  136. 136.
    Gualtieri F, Ghelardini C, Giotti A,et al.:Analgesia induced by the M 2 antagonist methoctramine administered i.c.v.TIPS 1989, (Suppl IV):99.Google Scholar
  137. 137.
    Bartolini A, Ghelardini C, Fantetti L,et al.:Role of muscarinic receptor subtypes in central antinociception.Br J Pharmacol 1992,105:77–82. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  138. 138.
    Ghelardini C, Giotti A, Gualtieri F,et al.:Presynaptic auto- and heteroreceptors in the cholinergic regulation of pain.In InTrends in Receptor Research. Edited by Angeli P, Gulini U, Quaglia W. Amsterdam: Elsevier Science; 1992: 95–114.Google Scholar
  139. 139.
    Gillberg PG, Gordh T Jr, Jansson I,et al.:Characterization of the antinociception induced by intrathecally administered carbachol.Pharmacol Toxicol 1989,64:340–343. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  140. 140.
    Iwamoto ET, Marion L:Characterization of the antinociception produced by intrathecally administered muscarinic agonists in rats.J Pharmacol Exp Ther 1993,266:329–338. ▸ View thePubMed notation for this reference.PubMedGoogle Scholar
  141. 141.
    Dawson GR, Iversen SD:The effect of novel cholinterase inhibitors and selective muscarinic receptor agonists in tests of reference and working memory.Behavioral Brain Res 1993,57:143–153.CrossRefGoogle Scholar
  142. 142.
    Fields HL:Central nervous system mechanisms for control of pain transmission.In InPlain. New York: McGraw-Hill; 1987:99–131.Google Scholar
  143. 143.
    Fields HL, Basbaum AI:Central nervous system mechanisms of pain modulation.In InTextbook of Pain. Edited by Wall PD, Melzack R. Edinburgh: Churchill Livingstone; 1994:243–257.Google Scholar
  144. 144.
    MacLennan AJ, Drugan RC, Maier SF:Long-term stress-induced analgesia blocked by scopolamine.Psychopharmacology 1983,80:267–268. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  145. 145.
    Watkins LR, Katayama Y, Kinscheck IB,et al.:Muscarinic cholinergic mediation of opiate and non-opiate environmentally induced analgesias.Brain Res 1984,300:231–242. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  146. 146.
    Sperber ES, Kramer E, Bodnar RJ:Effects of muscarinic receptor antagonism upon two forms of stress-induced analgesia.Pharmacol Biochem Behav 1986,25:171–179. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  147. 147.
    Mayer DJ, Watkins LR:Multiple endogenous opiate and nonopiate analgesia systems.Adv Pain Res Ther 1984,6:253–276.Google Scholar
  148. 148.
    Terman GW, Shavit Y, Lewis JW,et al.:Intrinsic mechanisms of pain inhibition and their activation by stress.Science 1984,226:1270–1277. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  149. 149.
    Watkins LR, Katayama Y, Kinscheck IB,et al.:Muscarinic cholinergic mediation of opiate and non-opiate environmentally induced analgesias.Brain Res 1984,300:231–242. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar
  150. 150.
    Katayama Y, Watkins LR, Becker DP,et al.:Evidence for involvement of cholinoceptive cells of the parabrachial region in environmentally induced nociceptive suppression in the cat.Brain Res 1984,299:348–353. ▸ View thePubMed notation for this reference.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  • Alexander Nemirovsky
  • David Niv

There are no affiliations available

Personalised recommendations