Advertisement

Israel Journal of Mathematics

, Volume 98, Issue 1, pp 61–99 | Cite as

On groups of hyperbolic length

  • Douglas P. Brozovic
  • Ronald M. Solomon
Article

Abstract

Upper and lower bounds are established for the maximum length of a chain of subgroups in a finite classical linear group. Also, it is proved that, for each primep, all but finitely many finite Lie type groups in characteristicp have a longest chain which passes through a maximal parabolic.

Keywords

Maximal Subgroup Maximal Torus Maximal Rank Cartan Subgroup Isotropic Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aschbacher,On the maximal subgroups of the finite classical groups, Inventiones mathematicae76 (1984), 469–514.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    D. Brozovic,A reduction theorem for the chain length of an odd characteristic Lie type group, Journal of Algebra163 (1994), 739–756.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    D. Brozovic,Almost simple p-obstructions in odd characteristic Lie type groups, Communications in Algebra22 (1994), 1219–1227.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    D. Brozovic,Groups of hyperbolic length in odd characteristic groups of Lie type, Journal of Algebra164 (1994), 210–243.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. Brozovic,The length of chains in odd characteristic Lie type groups, Journal of Algebra170 (1994), 440–469.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Brozovic,Subgroup chains in finite groups inGroup Theory: Proceedings of the Biennial Ohio State-Denison Conference (S. Sehgal and R. Solomon, eds.), World Scientific, Singapore, 1993, pp. 70–81.Google Scholar
  7. [7]
    P. Cameron, R. Solomon and A. Turull,Chains of subgroups in symmetric groups, Journal of Algebra127 (1989), 340–352.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. M. Cohen, M. Liebeck, J. Saxl and G. M. Seitz,The local maximal subgroups of the exceptional groups of Lie type, Proceedings of the London Mathematical Society64 (1992), 21–48.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Curtis and I. Reiner,Methods of Representation Theory, with Applications to Finite Groups and Orders, Volume I, Wiley London, 1981, 1990.MATHGoogle Scholar
  10. [10]
    P. Gilkey and G. M. Seitz,Some representations of exceptional Lie algebras, Geometriae Dedicata25 (1988), 407–416.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    P. B. Kleidman,The maximal subgroups of the Chevalley groups G 2(q) with q odd, the Ree groups2G2(q), and their automorphism groups, Journal of Algebra117 (1988), 30–71.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    P. B. Kleidman,The maximal subgroups of the Steinberg triality groups 3D4(q) and of their automorphism groups, Journal of Algebra115 (1988), 182–199.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    P. B. Kleidman,The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ8+(q) and of their automorphism groups, Journal of Algebra110 (1987), 173–242.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    P. B. Kleidman,The maximal subgroups of the low-dimensional, linear groups, Ph.D. Thesis, University of Cambridge, 1987.Google Scholar
  15. [15]
    P. B. Kleidman and M. Liebeck,The Subgroup Structure of the Finite Classical Groups Cambridge University Press, Cambridge, 1990.MATHGoogle Scholar
  16. [16]
    M. Liebeck, J. Saxl and G. M. Seitz,Subgroups of maximal rank in finite exceptional groups of Lie type, Proceedings of the London Mathematical Society65 (1992), 297–335.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    M. Liebeck and G. M. Seitz,Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geometriae Dedicata35 (1990), 353–387.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Liebeck and G. M. Seitz,Finite subgroups of exceptional algebraic groups, preprint.Google Scholar
  19. [19]
    R. Lyons,Generation of finite Chevalley groups of odd characteristic, Communications in Algebra18 (1990), 1433–1444.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    G. M. Seitz,Representations and maximal subgroups of finite groups of Lie type, Geometriae Dedicata25 (1988), 391–406.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    G. M. Seitz,On the subgroup structure of classical groups, Communications in Algebra10 (1982), 875–885.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    G. M. Seitz,Maximal subgroups of exceptional algebraic groups, Memoirs of the American Mathematical Society441 (1991), 1–197.MathSciNetGoogle Scholar
  23. [23]
    G. M. Seitz and D. Testerman,Extending morphisms from finite to algebraic groups, Journal of Algebra131 (1990), 559–574.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    R. Solomon and A. Turull,Chains of subgroups in groups of Lie type I, Journal of Algebra132 (1990), 174–184.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    R. Solomon and A. Turull,Chains of subgroups in groups of Lie type III, Journal of the London Mathematical Society44 (1991), 437–444.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    R. Steinberg,Representations of algebraic groups, Nagova Mathematical Journal22 (1963), 33–56.MATHMathSciNetGoogle Scholar
  27. [27]
    D. Testerman,Irreducible subgroups of exceptional algebraic groups, Memoirs of the American Mathematical Society390 (1988), 1–190.MathSciNetGoogle Scholar
  28. [28]
    A. Turull,Fixed point free actions with regular orbits, Journal für die reine und angewandte Mathematik371 (1986), 67–91.MATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Turull and A. Zame,Number of prime divisors and subgroup chains, Archiv der Mathematik55 (1990), 333–341.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1997

Authors and Affiliations

  1. 1.Department of MathematicsThe University of North TexasDentonUSA
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations