Israel Journal of Mathematics

, Volume 67, Issue 2, pp 225–242 | Cite as

On weakly precipitous filters

  • Hans-Dieter Donder
  • Jean-Pierre Levinski


We answer a question of T. Jech, showing that (1) there may exist weakly precipitous filters inL, and (2) there may exist a weakly precipitous filter on ω1 in a set-generic extension ofL. Hence, the existence of a weakly precipitous filter on ω1 does not imply the existence of 0#.


Winning Strategy Normal Filter Regular Cardinal Elementary Embedding Singular Cardinal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [GH] F. Galvin and A. Hajnal,Inequalities for cardinal power, Ann. of Math.101 (1975), 491–498.CrossRefMathSciNetGoogle Scholar
  2. [J] T. Jech,Some properties of k-complete ideals defined in terms of infinite games, Ann. Pure Appl. Logic26 (1984), 31–45.MATHCrossRefMathSciNetGoogle Scholar
  3. [JP] T. Jech and K. Prikry,Ideals over uncountable sets: applications of almost disjoint functions and generic ultrapowers, Memoirs Am. Math. Soc.18 (1980), No. 214.MathSciNetGoogle Scholar
  4. [S] S. Shelah,On power of singular cardinals, Notre Dame J. Formal Logic27 (1986), 263–299.MATHCrossRefMathSciNetGoogle Scholar
  5. [S-1] S. Shelah,More on powers of singular cardinals, Isr. J. Math.59 (1987), 299–326.MATHCrossRefGoogle Scholar
  6. [Si] J. Silver,On the singular cardinals problem, Proc. Int. Congr. Math. Vancouver, 1974, pp. 265–268.Google Scholar

Copyright information

© Hebrew University 1989

Authors and Affiliations

  • Hans-Dieter Donder
    • 1
    • 2
  • Jean-Pierre Levinski
    • 1
    • 2
  1. 1.Mathematishes InstitutFreie UniversitätBerlin, 33FRG
  2. 2.Department of MathematicsDartmouth CollegeHanoverUSA

Personalised recommendations