Israel Journal of Mathematics

, Volume 67, Issue 2, pp 170–180 | Cite as

On the second lowey term of projectives of a group algebra

  • Julio Lafuente


LetG be a finite group andK a field of prime characteristicsp. LetA be an irreducibleKG-module andP G(A) the projective cover ofA. In this paper we show that
$$\Phi _p (C_G (A)) \leqq C_G (P_G (A)/P_G (A)J(KG)^2 ) \leqq C_G (A) \cap \Phi _p (G)$$
, where, for a groupH, Φp(H)=Φ(H modO p′(H)).


Exact Sequence Normal Subgroup Finite Group Irreducible Component Short Exact Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aschbacher and R. Guralnick,Some applications of the first cohomology group, J. Algebra90 (1984), 446–460.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Brandis,Moduln und verschränkte Homomorphismen endlicher Gruppen, J. Reine Angew. Math.385 (1988), 102–116.MATHMathSciNetGoogle Scholar
  3. 3.
    W. Gaschütz,Praefrattinigruppen. Arch. Math.13 (1962), 418–426.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. L. Griess and P. Schmid,The Frattini module. Arch. Math.30 (1978), 256–268.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    K. W. Gruenberg,Cohomological topics in Group Theory, Lecture Notes in Math.143, Springer-Verlag, Berlin, 1970.MATHGoogle Scholar
  6. 6.
    K. W. Gruenberg,Groups of non-zero presentation rank. Symp. Math.XVII (1976), 215–224.MathSciNetGoogle Scholar
  7. 7.
    P. J. Hilton and U. Stammbach,A Course in Homological Algebra, GTM, 4, Springer-Verlag, Berlin, 1971.MATHGoogle Scholar
  8. 8.
    B. Huppert,Endliche Gruppen I, Springer-Verlag, Berlin, 1970.Google Scholar
  9. 9.
    B. Huppert and N. Blackburn,Finite Groups II, Springer-Verlag, Berlin, 1982.MATHGoogle Scholar
  10. 10.
    L. G. Kovács,On the First Cohomology of a Finite Group with Coefficients in a Simple Module, Research Report No. 43. The Australian National University, 1984.Google Scholar
  11. 11.
    J. Lafuente,Crowns and centralizers of chief factors of finite groups. Commun. Algebra13 (1985), 657–668.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Lafuente,Chief factors of finite groups with order a multiple of p, Commun. Algebra16 (1988), 1563–1580.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Michler,The kernel of block of a group algebra Proc. Am. Math. Soc.37 (1973), 47–49.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Pahlings,Kerne und projektive Auflösungen, Mitt. Math. Sem. Giessen149 (1981). 107–113.MathSciNetGoogle Scholar
  15. 15.
    U. Stammbach,On the principal indecomposables of a modular group algebra. J. Pure Appl. Algebra30 (1983), 69–84.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    U. Stammbach,Split chief factors and cohomology, J. Pure Appl. Algebra44 (1987), 349–352.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    W. Willems,On the projectives of a group algebra, Math. Z.171 (1980), 163–174.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    W. Willems,On p-chief factors of finite groups, Commun. Algebra,13 (1985), 2433–2447.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1989

Authors and Affiliations

  • Julio Lafuente
    • 1
  1. 1.Departmento de MatemáticasUniversidad de ZaragozaSpain

Personalised recommendations