Skip to main content
Log in

Gaussian quadrature formulas and Laguerre-Perron's equation

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

LetI(f) be the integral defined by:I(f) = ∫ b a f(x)w(x)dx withf a given function,w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value ofI(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Belmehdi,On the associated orthogonal polynomials, J. Comput. Appl. Math.32 (1990), 311–319.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Belmehdi,On Semi-classical linear functionals of class s=1. Classification and integral representations, Indag. Math. (N.S)3(3) (1992), 253–275.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Brezinski,Padé-type approximates and general orthogonal polynomials (Birkhauser, Basel, 1980).

    Google Scholar 

  4. T. S. Chihara,An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.

    MATH  Google Scholar 

  5. W. Gautschi,E. B. Christoffel, P. L. Butzer and F. Fehér editeurs (Birkhauser, Basel, 1981), p. 72.

    Google Scholar 

  6. G. H. Golub and J. H. Welsch,Calculation of Gauss quadrature rules, Math. Comp.23 (1969), 221–230.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Hendriksen and H. Van Rossum,Semi-classical-orthogonal polynomials, In Polynômes orthogonaux et Applications. C. Brezinski and al. editeurs., LNM 1171, Springer-Verlag, Berlin 1985, 354–361.

    Chapter  Google Scholar 

  8. Hassan K. Khalil,Nonlinear Systems, East Lansing, Michigan, 1991.

  9. P. Maroni,Une caractérisation des polynômes orthogonaux semi-classiques, C.R. Acad. Sci. Paris, Sér. 1, 301 (1985), pp. 269–272.

    MATH  MathSciNet  Google Scholar 

  10. W. H. Press and S. A. Teukolsky,Orthogonal polynomials and gaussian quadrature with nonclassical weight functions, Computers in physics,4 (1990), 423–426.

    Google Scholar 

  11. R. A. Sack and A. F. Donovan,An algorithm for Gaussian quadralure given modified moments, Num. Math.18 (1972), 465–478.

    Article  MATH  MathSciNet  Google Scholar 

  12. Rakhi Bhattacharya, Malay Bandyopadhyay and Sandip Banerjee,Stability and Bifurcation in a Diffusive Prey-Predator System: Non-Linear Bifurcation Analysis, Korean J. Comput. & Appl. Math.10 (2002), 17–26.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. A. Shohat,A differential equation for orthogonal polynomials, Duke Math. J.5 (1939), 401–417.

    Article  MathSciNet  Google Scholar 

  14. Yougrui Duan, Peng Tian and Shunian Zhang,Oscillation and Stability of Nonlinear Neutral Impulsive Delay Differential Equations, Korean J. Comput. & Appl. Math.11 (2003), 243–253.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. S. Wilf, Mathematics for the Physical Sciences (Wiley, New York, 1962), Problem 9, p. 80.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. El Hajji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajji, S.E., Touijrat, L. Gaussian quadrature formulas and Laguerre-Perron's equation. JAMC 18, 205–228 (2005). https://doi.org/10.1007/BF02936566

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936566

AMS Mathematics Subject Classification

Key words and phrases

Navigation