Advertisement

Gaussian quadrature formulas and Laguerre-Perron's equation

  • S. El Hajji
  • L. Touijrat
Article
  • 60 Downloads

Abstract

LetI(f) be the integral defined by:I(f) = ∫ a b f(x)w(x)dx withf a given function,w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value ofI(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.

AMS Mathematics Subject Classification

33A65 

Key words and phrases

Semi-classical orthogonal polynomials Jacobi matrix Laguerre-Perron's equation nonclassical weight function stability of the algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Belmehdi,On the associated orthogonal polynomials, J. Comput. Appl. Math.32 (1990), 311–319.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Belmehdi,On Semi-classical linear functionals of class s=1. Classification and integral representations, Indag. Math. (N.S)3(3) (1992), 253–275.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    C. Brezinski,Padé-type approximates and general orthogonal polynomials (Birkhauser, Basel, 1980).Google Scholar
  4. 4.
    T. S. Chihara,An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.MATHGoogle Scholar
  5. 5.
    W. Gautschi,E. B. Christoffel, P. L. Butzer and F. Fehér editeurs (Birkhauser, Basel, 1981), p. 72.Google Scholar
  6. 6.
    G. H. Golub and J. H. Welsch,Calculation of Gauss quadrature rules, Math. Comp.23 (1969), 221–230.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Hendriksen and H. Van Rossum,Semi-classical-orthogonal polynomials, In Polynômes orthogonaux et Applications. C. Brezinski and al. editeurs., LNM 1171, Springer-Verlag, Berlin 1985, 354–361.CrossRefGoogle Scholar
  8. 8.
    Hassan K. Khalil,Nonlinear Systems, East Lansing, Michigan, 1991.Google Scholar
  9. 9.
    P. Maroni,Une caractérisation des polynômes orthogonaux semi-classiques, C.R. Acad. Sci. Paris, Sér. 1, 301 (1985), pp. 269–272.MATHMathSciNetGoogle Scholar
  10. 10.
    W. H. Press and S. A. Teukolsky,Orthogonal polynomials and gaussian quadrature with nonclassical weight functions, Computers in physics,4 (1990), 423–426.Google Scholar
  11. 11.
    R. A. Sack and A. F. Donovan,An algorithm for Gaussian quadralure given modified moments, Num. Math.18 (1972), 465–478.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rakhi Bhattacharya, Malay Bandyopadhyay and Sandip Banerjee,Stability and Bifurcation in a Diffusive Prey-Predator System: Non-Linear Bifurcation Analysis, Korean J. Comput. & Appl. Math.10 (2002), 17–26.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. A. Shohat,A differential equation for orthogonal polynomials, Duke Math. J.5 (1939), 401–417.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Yougrui Duan, Peng Tian and Shunian Zhang,Oscillation and Stability of Nonlinear Neutral Impulsive Delay Differential Equations, Korean J. Comput. & Appl. Math.11 (2003), 243–253.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    H. S. Wilf, Mathematics for the Physical Sciences (Wiley, New York, 1962), Problem 9, p. 80.MATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2005

Authors and Affiliations

  1. 1.Departement of Mathematics and data processingMohammed V Agdal University, Sciences FaculteRabatMorocco

Personalised recommendations