Classification and existence of nonoscillatory solutions of higher order nonlinear neutral difference equations

  • Yong Zhou
  • C. F. Li


In this paper, we consider the higher order nonlinear neutral delay difference equation of the form
$$\Delta ^r (x_n + px_{n - \tau } ) + f(n,x_{n - \sigma _1 (n)} ,x_{n - \sigma _2 (n)} ,...,x_{n - \sigma _m (n)} ) = 0.$$
We give an integrated classification of nonoscillatory solutions of the above equation according to their asymptotic behaviours. Necessary and sufficient conditions for the existence of nonoscillatory solutions with designated asymptotic properties are also established.

AMS Mathematics Subject Classification


Key words and phrases

Nonoscillatory solutions neutral difference equations classification 


  1. 1.
    R. P. Agarwal, S. R. Grace and D. O'Regan,Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, 2000.Google Scholar
  2. 2.
    R. P. Agarwal and P. J. Y. Wong,Advanced Topics in Difference Equations, Kluwer Academic Publishers, 1997.Google Scholar
  3. 3.
    R. P. Agarwal,Difference Equations and Inequalities (Second Edition), Marcel Dekker Inc. 2000.Google Scholar
  4. 4.
    R. P. Agarwal and S. R. Grace,The oscillation of higher-order nonlinear difference equations of neutral type, Appl. Math. Lett.12 (1999), 77–83.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. P. Agarwal, M. M. S. Manuel and E. Thandapani,Oscillatory and non-oscillatory behavior of second-order neutral delay difference equations, Mathl, Comput. Modelling24(1) (1996), 5–11.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. P. Agarwal, M. M. S. Manuel and E. Thandapani,Oscillatory and non-oscillatory behavior of second-order neutral delay difference equations II, Appl. Math. Lett.10(2) (1997), 103–109.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. P. Agarwal, E. Thandapani and P. J. Y. Wong,Oscillations of higher-order neutral difference equations, Appl. Math. Lett.10(1) (1997), 71–78.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. S. Cheng and W. T. Patula,An existence theorem for a nonlinear difference equation, Nonlinear Anal.20 (1993), 193–203.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    L. H. Erbe, Q. Kong and B. G. Zhang,Oscillation Theory for Functional Differential Equations, Marcel Dekker Inc. 1995.Google Scholar
  10. 10.
    J. R. Graef, A. Miciano, P. W. Spikes, P. Sundaran and E. Thandapani,Oscillatory and asymptotic behavior of solutions of nonlinear neutral-type difference equations, J. Austral. Math. Soc. Ser.B 38 (1996), 163–171.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    W. T. Li and S. S. Cheng,Asymptotic trichotomy for positive solution of a class of odd order nonlinear neutral difference equations, Computers Math. Applic.35 (1998), 101–108.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    B. G. Zhang and B. Yang,Oscillation in higher order nonlinear difference equation, Chinese Ann. Math.20 (1999), 71–80.MATHGoogle Scholar
  13. 13.
    Yong Zhou,Oscillation of higher order linear difference equations, Advance of Difference Equations III. Computers Math. Applic.42 (2001), 323–331.MATHGoogle Scholar
  14. 14.
    Yong Zhou,Existence of nonoscillatory solutions of higher-order neutral difference equations with general coefficients, Appl. Math. Lett.15 (2002), 785–791.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Yong Zhou and Y. Q. Huang,Existence for nonoscillatory solutions of higher-order nonlinear neutral difference equations, J. Math. Anal. Appl.280 (2003), 63–76.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Yong Zhou and B. G. Zhang,Classification and existence of non-oscillatory solutions of second-order neutral delay difference equations, Zeitschrift für Analysis und ihre Anwendungen20(1) (2001), 223–234.MATHMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2005

Authors and Affiliations

  1. 1.Department of MathematicsXiangtan UniversityHunanP. R. China

Personalised recommendations