Comparative study of the photochemistry of chloroplast membranes and photosystem II particles

  • J. Woodward
  • B. Lewis
  • G. Miracle
  • E. Greenbaum
Session 2 Applied Biological Research


A comparative study of the photoreducing potentials of spinach thylakoid membranes and spinach photosystem II particles has been made. Hexachloroplatinate ions have been used as electron acceptors in a Hill-like assay for oxygen evolution measurements with both thylakoid membranes and photosystem II particles. However, unlike other Hill acceptors, such as ferricyanide, hexachloroplatinate can be fully reduced to metallic platinum that is catalytically active for hydrogen evolution. This is experimentally confirmed in the ability of chloroplast membranes to photoprecipitate platinum and photoproduce molecular hydrogen. Although similar experiments with photosystem II particles resulted in hexachloroplatinate-supported oxygen evolution, hydrogen evolution was not observed. Moreover, photosystem II particles coupled to ferredoxin and hydrogenase resulted in neither hydrogen nor oxygen evolution—a distinct contrast to the results obtained with chloroplast membranes.

Index Entries

Chloroplasts photosystem II oxygen hydrogen chloroplatinic acid ferredoxin 



[2-(N-morpholino)-ethanesulfonic acid


2,6 dichlorophenol-indephenol


[3-(3,4-dichlorophenyl)-l, 1-dimethylurea




N,N,N 1N1tetramethyl-p-phenylene diamine


chloroplast, ferredoxin, hydrogenase


  1. 1.
    Arnon, D., Mitsui, A., and Paneque, A. (1961),Science 134, 1425.CrossRefGoogle Scholar
  2. 2.
    Benemann, J. R., Berenson, J. A., Kaplan, N. O., and Kamen, M. D. (1973),Proc. Natl. Acad. Sci. USA 70, 2317–2320.CrossRefGoogle Scholar
  3. 3.
    Krampitz, L. O. (1977)Clean Fuels from Biomass and Wastes Waterman, W. W. ed.), Institute of Gas Technology, Chicago.Google Scholar
  4. 4.
    Tsujimoto, H. Y., Hiyama, T., and Arnon, D. I. (1980),Biochem. Biophys. Res. Comm. 93, 215–222.CrossRefGoogle Scholar
  5. 5.
    Arnon, D. I., Tsujimoto, H. Y., and Tang, G. M.-S. (1980),Proc. Natl. Acad. Sci. USA 77, 2676–2680.CrossRefGoogle Scholar
  6. 6.
    Arnon, D. I., Tsujimoto, H. Y., and Tang, G. M.-S. (1981),Proc. Natl. Acad. Sci. USA 78, 2942–2946.CrossRefGoogle Scholar
  7. 7.
    Greenbaum, E. (1985),Science 230, 1373–1375.CrossRefGoogle Scholar
  8. 8.
    Woodward, J. and Greenbaum, E. (1983),Biotech. Bioeng. Symp. Ser. 13 271–276.Google Scholar
  9. 9.
    Ghanotakis, D. F., Babcock, G. T., and Yocum, C. F. (1984),Biochim. Biophys. Acta 765, 388–398.CrossRefGoogle Scholar
  10. 10.
    Greenbaum E. (1984),Photobiochem. Photobiophys. 8, 323–332.Google Scholar
  11. 11.
    Baker, W. J., Combs, J. F., Zinn, T. L., Wotring, A. W., and Wall, R. F. (1959),Ind. Eng. Chem. 51, 727–730.CrossRefGoogle Scholar
  12. 12.
    Arnon, D. I. (1949),Plant Physiol. 24, 1–15.CrossRefGoogle Scholar
  13. 13.
    Dunahay, T. G., Staehelin, L. A., Seibert, M., Ogilvie, P. D., and Berg, S. P. (1984),Biochim. Biophys. Acta 764, 179–193.CrossRefGoogle Scholar
  14. 14.
    Hoffman, D., Thauer, R., and Trebst, A. (1977),Z. Naturforsch 32C, 257–262.Google Scholar
  15. 15.
    Greenbaum, E. (1981),Advances in Biotechnology, Moo-Young, M. and Robinson, S. W., eds., vol. II, pp. 297–302, Pergamon, Oxford.Google Scholar
  16. 16.
    Neumann, J. and Drechsler, Z. (1984),Proc. Natl. Acad. Sci. USA 81, 2070–2074.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • J. Woodward
    • 1
  • B. Lewis
    • 2
  • G. Miracle
    • 1
  • E. Greenbaum
    • 1
  1. 1.Chemical Technology DivisionOak Ridge National LaboratoryOak Ridge
  2. 2.Department of ChemistryUniversity of WisconsinMadison

Personalised recommendations