Applied Biochemistry and Biotechnology

, Volume 20, Issue 1, pp 63–78 | Cite as

Kinetics of thermochemical pretreatment of lignocellulosic materials

  • A. O. Converse
  • I. K. Kwarteng
  • H. E. Grethlein
  • H. Ooshima
Session 1 Thermal and Chemical Processing


The results of an experimental study of the acid hydrolysis of hardwood are presented in the form of values for the three parameters, activation energy, power on the acid concentration, and pre-exponen-tial factor, of the first order kinetic constants for each of the following reaction participants: xylan remaining, glucan remaining, xylose formed, and xylose decomposed. These are used as a base for a quantitative theory to predict the temperature, time, and acid concentrations needed for effective pretreatment of the substrate for subsequent enzymatic hydrolysis of the glucan. This theory is based on the assumption that successful pretreatment requires >90% removal of the xylan, <10% removal of the glucan, and >80% xylose yield. This theory is compared with selected published data.

Index Entries

Pretreatment lignocellulosic substrates kinetics hydrolysis enzyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conner, A. H. (1983),Wood and Fiber Science 16, (2), 268–277.Google Scholar
  2. 2.
    Mason, W. H. (1921), US Patent1,399,976.Google Scholar
  3. 3.
    Richter, G. A. (1956),Tappi 39, (4), 193–210.Google Scholar
  4. 4.
    Marchessault, R. H. and St.-Pierre, J. (1978), Chemrawn Conf., Toronto, Canada.Google Scholar
  5. 5.
    Bender, R. (1979), US Patent4,136,207.Google Scholar
  6. 6.
    Lamptey, J., Robinson, C. W., and Moo-Young, M. (1985),Biotechnol. Letts. 7, (7), 531–534.CrossRefGoogle Scholar
  7. 7.
    Wright, J. D. (1988), A.I.Ch.E. National Meeting, New Orleans, LA.Google Scholar
  8. 8.
    Grohmann, K., Torget, R., and Himmel, M. (1985),Biotechnol. Bioengr. Symp. No. 15 59–80.Google Scholar
  9. 9.
    Tanahashi, M., Takada, S., Aoki, T., Goto, T., Higuchi, T., and Hanai, S. (1985),Wood Res. 69, 36–51.Google Scholar
  10. 10.
    Grethlein, H. E., Allen, D. C, and Converse, A. O. (1984),Biotechol. Bioengr. 26, 1498–1505.CrossRefGoogle Scholar
  11. 11.
    Brownell, H. H. and Saddler, J. N. (1985), Presented at the Chicago ACS meeting.Google Scholar
  12. 12.
    Kwarteng, I. K. (1983), PhD Thesis, Thayer School of Engr., Dartmouth College, Hanover, NH.Google Scholar
  13. 13.
    McParland, J. J., Grethlein, H. E., and Converse, A. O. (1982),Solar Energy 28, 55–63.CrossRefGoogle Scholar
  14. 14.
    Saeman, J. F., Bubi, J. L., and Harris, J. E. (1945),Ind. Engr. Chem. Anal. Sec. 17, 35–37.CrossRefGoogle Scholar
  15. 15.
    Root, D. F. (1956), PhD. thesis, University of Wisconsin.Google Scholar
  16. 16.
    Smith, P. C. (1980), ME Thesis, Thayer School of Engineering, Dartmouth College.Google Scholar
  17. 17.
    Grous, W. R., Converse, A. O., and Grethlein, H. E. (1986),Enzyme Microb. Technol. 8, 274–280.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • A. O. Converse
    • 1
  • I. K. Kwarteng
    • 1
  • H. E. Grethlein
    • 2
  • H. Ooshima
    • 1
  1. 1.Thayer School of EngineeringDartmouth CollegeHanover
  2. 2.Michigan Biotechnology InstituteLansing

Personalised recommendations