The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis

  • K. Grohmann
  • D. J. Mitchell
  • M. E. Himmel
  • B. E. Dale
  • H. A. Schroeder
Session 1 Thermal and Chemical Processing


Xylan backbones in native plant cell walls are extensively acety-lated. Previously, no direct investigations as to their role in cellulolytic enzyme resistance have been done, though indirect results point to their importance. An in vitro deesterification of aspen wood and wheat straw has been completed using hydroxylamine solutions. Yields of 90% acetyl ester removal for both materials have been accomplished, with little disruption of other fractions (i.e., lignin). Apparently, as the xylan becomes increasingly deacetylated, it becomes 5–7 times more digestible. This renders the cellulose fraction more accessible, and 2–3 times more digestible. This effect levels off near an acetyl removal of 75%, where other resistances become limiting.

Index Entries

Xylan ester groups cellulase pretreatment 


  1. 1.
    Aspinall, G. O. (1959),Adv. Carbohydr. Chem. 14, 429.Google Scholar
  2. 2.
    Timell, T. E. (1964),Adv. Carbohydr. Chem. 19, 247.Google Scholar
  3. 3.
    Timell, T. E. (1965),Adv. Carbohydr. Chem. 20, 409.Google Scholar
  4. 4.
    Timell, T. E. (1967),Wood Science Technol. 1, 45.CrossRefGoogle Scholar
  5. 5.
    Wilkie, K C. B. (1979),Adv. Carbohydr. Chem. 36, 215.CrossRefGoogle Scholar
  6. 6.
    Lai, Y. Z. and Sarkanen, K. V. (1971),Lignins: Occurrence, Formation, Structure, and Reactions, Sarkanen, K. V. and Ludwig, C. H. eds., Wiley-Inter-science, NY, pp. 165–241.Google Scholar
  7. 7.
    Erins, P., Cinite, V., Jakobsons, M., and Gravitis, J. (1976),Appl. Polym. Symp. 28, 1117.Google Scholar
  8. 8.
    Smith, D. C. C. (1955),Nature. 176, 267.CrossRefGoogle Scholar
  9. 9.
    Higuchi, T., Ito, Y., Shimada, M., and Kawamura, I. (1967),Phytochem. 6, 1551.CrossRefGoogle Scholar
  10. 10.
    Higuchi, T., Ito, Y., and Kawamura, I. (1967),Phytochemistry 6, 875.CrossRefGoogle Scholar
  11. 22.
    Kuwatsuka, S. and Shindo, H. (1973),Soil Sci. Plant Nutr. (Tokyo) 19, 219.Google Scholar
  12. 22.
    Whitmore, F. W. (1974),Plant Physiol. 53, 728.Google Scholar
  13. 23.
    Markwalder, H. U. and Neukom, H. (1976),Phytochem. 15, 836.CrossRefGoogle Scholar
  14. 14.
    Harris, P. J. and Hartley, R. D. (1976),Nature 259, 508.CrossRefGoogle Scholar
  15. 15.
    Theander, O., Uden, P., and Aman, P. (1981),Agric. Environ. 6, 127.CrossRefGoogle Scholar
  16. 16.
    Hartley, R. D. and Haverkamp, J. (1984),J. Sci. Food Agric. 35, 14.CrossRefGoogle Scholar
  17. 17.
    Sealbert, A., Monties, B., Rolando, C, and Sierra-Escudero, A. (1986),Holz-forschung 40, 191.Google Scholar
  18. 18.
    Scalbert, A., Monties, B., Lallemand, J. Y., Guittet, E., and Rolando, C. (1985),Phytochemistry 24, 1359.CrossRefGoogle Scholar
  19. 19.
    Hartley, R. D. (1972),J. Sci. Food Agric. 23, 1347.CrossRefGoogle Scholar
  20. 20.
    Hartley, R. D. and Jones, E. C. (1977),Phytochem. 16, 1531.CrossRefGoogle Scholar
  21. 21.
    Sawai, A., Kondo, T., and Ara, S. (1983),J. Japan Grassl. Sci. 29, 175.Google Scholar
  22. 22.
    Morris, E. J. and Bacon, J. S. D. (1977),J. Agric. Sci. Camb.89, 327.Google Scholar
  23. 23.
    Bacon, J. S. D. and Gordon, A. H. (1980),J. Agric. Sci. Camb.94, 361.CrossRefGoogle Scholar
  24. 24.
    Bacon, J. S. D., Chesson, A., and Gordon, A. H. (1981),Agric. Environ. 6, 115.CrossRefGoogle Scholar
  25. 25.
    Chesson, A., Gordon, A. H., and Lomax, J. A. (1983),J. Sci. Food Agric. 34, 1330.CrossRefGoogle Scholar
  26. 26.
    Agosin, E., Monties, B., and Odier, E. (1985),J. Sci. Food Agric. 36, 925.CrossRefGoogle Scholar
  27. 27.
    Tarkow, H., Stamm, A. J., and Erickson, E. C. O. Acetylated Wood, US Forest Service Rept. No. 1593, U.S.D.A. Forest Products Laboratory, Publ., Madison, WI (1955), pp. 29.Google Scholar
  28. 28.
    Stamm, A. J. and Baechler, R. H. (1960),For. Prod. J. 10, 22.Google Scholar
  29. 29.
    Goldstein, I. S., Jeroski, E. B., Lund, A. E., Nielson, J. F., and Weaver, J. W. (1961),For. Prod. J. 11, 363.Google Scholar
  30. 30.
    Sinner, M., Parameswaran, N., and Dietrichs, H. H. (1979),Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Brown, R. D. and Jurasek, L., eds., Adv. in Chemistry No. 181, American Chemical Society Publ., Washington, DC, pp. 303–329.Google Scholar
  31. 31.
    Biely, P., Puls, J., and Schneider, H. (1985),FEBS Lett. 186, 80.CrossRefGoogle Scholar
  32. 32.
    Biely, P., MacKenzie, C. R., Puls, J., and Schneider, H. (1986),Bio/Technology 4, 731.CrossRefGoogle Scholar
  33. 33.
    Biely, P., MacKenzie, C. R., Puls, J., and Schneider, H. (1987),Wood and Cel-lulosics: Industrial Utilization, Biotechnology, Structure, and Properties, Kennedy, J. F., Phillips, G. O., and Williams, P. A., eds., (1987), Horwood, Chichester, UK, pp. 283–289.Google Scholar
  34. 34.
    Shimizu, K. (1981),J.A.R.Q.; Japan Agricult. Res. Quart. 14, 244.Google Scholar
  35. 35.
    Fan, L. T., Lee, Y. H., and Gharpuray, M. M. (1982),Adv. Biochem. Eng.. 23, 157.Google Scholar
  36. 36.
    Han, Y. W. (1978),Adv. Appl. Microbiol. 23, 119.CrossRefGoogle Scholar
  37. 37.
    Millet, M. A., Baker, A. J., and Satter, L. D. (1976),Biotech. Bioeng. Syrnp. 6, 125.Google Scholar
  38. 38.
    Slavik, I., Pasteka, M., and Kucerova, M. (1967),Faserforsch. Textiltech. 18, 584.Google Scholar
  39. 39.
    Siggia, S. and Hanna, J. G. (1979),Quantitative Organic Analysis via Functional Groups, Wiley, New York, pp. 172–183.Google Scholar
  40. 40.
    Grohmann, K., Himmel, M., Rivard, C, Tucker, M., Baker, J., Torget, R., and Graboski, M. (1985),Biotech. Bioeng. Symp. 14, 137.Google Scholar
  41. 41.
    Moore, W. E. and Johnson, D. B.Procedures for the Chemical Analysis of Wood and Wood Products, Forest Products Laboratory, USDA, Madison, WI, Report No. 67–045.Google Scholar
  42. 42.
    Official Test Methods (1983), Technical Association of Pulp and Paper Industry, Atlanta, GA.Google Scholar
  43. 43.
    Horwitz, W. ed. (1980),Official Methods of Analysis of the Association of Official Analytical Chemists, 13th ed., AOAC, Washington, DC, Method No. 14,064.61 Google Scholar
  44. 44.
    Grohmann, K., Torget, R., and Himmel, M. (1985),Biotech. Bioeng. Symp. 15, 59.Google Scholar
  45. 45.
    Teese, E. T. and Mandels, M. (1980),Biotechnol. Bioeng. 22, 323.CrossRefGoogle Scholar
  46. 46.
    Wind, R. A., Anthonio, F. E., Duivestijn, M. J., Smidt, J., Trommel, J., and de Vette, G. M. C. (1983),J. Magn. Reson. 52, 424.Google Scholar
  47. 47.
    Himmel, M. E. and Oh, K. K. (1983),Biotech. Bioeng. Symp. 13, 583.Google Scholar
  48. 48.
    Goldschmid, O. (1971),Lignins: Occurence, Formation, Structure, and Reactions, Sarkanen, K. V. and Ludwig, C. H., eds., Wiley-Interscience, New York, pp. 241–264.Google Scholar
  49. 49.
    Sterk, H., Sattler, W., and Esterbauer, H. (1987),Carbohydr. Res. 164, 85.CrossRefGoogle Scholar
  50. 50.
    Haw, J. F., Maciel, G. E., and Schroeder, H. A. (1984),Anal. Chem. 56,1323.CrossRefGoogle Scholar
  51. 51.
    Ghose, T. K. (1987),Pure and Appl. Chem. 59, No. 2, 257.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • K. Grohmann
    • 1
  • D. J. Mitchell
    • 1
  • M. E. Himmel
    • 1
  • B. E. Dale
    • 2
  • H. A. Schroeder
    • 2
  1. 1.Solar Fuels Research Diu., Biotechnology BranchSolar Energy Research InstituteGolden
  2. 2.Colorado State UniversityFort Collins

Personalised recommendations