Advertisement

Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentrations

  • W. Schwald
  • C. Breuil
  • H. H. Brownell
  • M. Chan
  • J. M. Saddler
Session 1 Thermal and Chemical Processing

Abstract

Steam-heating of aspen wood chips improved the enzymatic digestibility of the cellulose. Scaling up the reaction vessel from 2 to 60 L had virtually no influence on the chemical composition and the accessibility of the lignocellulosic substrate. Over 85% of the cellulose could be hydrolyzed to glucose when an 8% substrate concentration was used. The residual content of alkali-insoluble lignin appeared to control the digestibility of the cellulose. Increased delignification either by prolonged steaming, oxidative posttreatment, or SO2 catalysis improved the accessibility of the cellulose. The use of SO2 as a catalyst also increased the recovery yield of the wood after steam-heating, with more than 70% of the original xylan recovered as monomeric xylose. Conversion yields of above 90% were achieved at low levels of filter paper activity after a relatively short incubation time. Removal of alkali-soluble lignin did not influence digestibility when the enzyme concentration was based on the cellulose content of the substrates.

Index Entries

Steam-pretreatment SO2-catalysis enzymatic hydrolysis high substrate concentration chemical composition (alkali-insoluble lignin) 

Nomenclature

SHA-WI

water-insoluble fraction of steam-heated aspen wood

SHA-WIA

water-and-alkali-insoluble fraction of steam-heated aspen wood

SHA-WIA/H2O2

water-and-alkali-insoluble fraction of steam-heated aspenwood posttreated with hydrogen peroxide

References

  1. 1.
    Sudo, K., Shimizu, K., Ishii, T., Fujii, T., and Nagasawa, S. (1986),Holzforschung 40, 339.CrossRefGoogle Scholar
  2. 2.
    Dekker, R. F. H., Karageorge, H., and Wallis, A. F. A. (1987),Biocatalysis 1,47.CrossRefGoogle Scholar
  3. 3.
    Biermann, C. J., Schultz, T. P., and McGinnis, G. D. (1984),J. Wood Chem. Technol. 4(1), 111.CrossRefGoogle Scholar
  4. 4.
    Lynd, L. R. and Grethlein, H. E. (1987),Biotechnol. Bioeng. 29, 92.CrossRefGoogle Scholar
  5. 5.
    Lee, Y.-H., Robinson, C. W., and Moo-Young, M. (1987),Biotechnol. Bioeng. 29, 572.CrossRefGoogle Scholar
  6. 6.
    Hoermeyer, H. F., Bonn, G., Kim, D. W., and Bobleter, O. (1987),J. Wood Chem. Technol. 7(2), 269.CrossRefGoogle Scholar
  7. 7.
    Saddler, J. N. and Brownell, H. H. (1982),Proc. Royal Soc. Canada, Int. Symp. on Ethanol from Biomass, Duckworth, H. E., ed., Winnipeg, Canada, p. 206.Google Scholar
  8. 8.
    Schwald, W., Chan, M., Brownell, H. H., and Saddler, J. N. (1988),Proc. FEMS Symp. No. 43, Biochemistry and Genetics of Cellulose Degradation, Aubert, J. P., Béguin, P., and Millet, J., eds., Academic, London, p. 303.Google Scholar
  9. 9.
    Saddler, J. N. (1986),Microb. Sci. 3(3), 84.Google Scholar
  10. 10.
    Klesov, A. A. and Sinitsyn, A. P. (1981),Bioorganicheskaya Khimiya 7(12), 1801.Google Scholar
  11. 11.
    Cowling, E. B. and Kirk, T. K. (1976),Biotechnol. Bioeng. Symp., No. 6, 95.Google Scholar
  12. 12.
    Schurz, J. (1986),Holzforschung,40, 225.Google Scholar
  13. 13.
    Rivers, D. B. and Emert, G. H. (1988),Biotechnol. Bioeng. 31, 278.CrossRefGoogle Scholar
  14. 14.
    Fan, L. T., Lee, Y.-H., and Beardmore, D. H. (1981),Biotechnol. Bioeng. 23, 419.CrossRefGoogle Scholar
  15. 15.
    Grethlein, H. G. (1985),Bio/Technol. 3, 155.CrossRefGoogle Scholar
  16. 16.
    Clark, T. A. and Mackie, K. L. (1987),J. Wood Chem. Technol. 7(3), 373.CrossRefGoogle Scholar
  17. 17.
    Wong, K. K. Y., Deverell, K. F., Mackie, K. L., Clark, T. A., and Donaldson, L. A. (1988),Biotechnol. Bioeng. 31, 447.CrossRefGoogle Scholar
  18. 18.
    Brownell, H. H. and Saddler, J. N. (1987),Biotechnol. Bioeng. 29, 228.CrossRefGoogle Scholar
  19. 19.
    Gould, J. M. (1984),Biotechnol. Bioeng. 26, 46.CrossRefGoogle Scholar
  20. 20.
    Irick, T., West, K., Brownell, H. H., Schwald, W., and Saddler, J. N. (1988),Appl. Biochem. Biotechnol. 17, 137.CrossRefGoogle Scholar
  21. 21.
    Schwald, W. and Saddler, J. N. (1988),Enzyme Microb. Technol. 10 37.CrossRefGoogle Scholar
  22. 22.
    Schwald, W., Chan, M., Breuil, C, and Saddler, J. N. (1988),Appl. Microbiol. Biotechnol. 28, 398.CrossRefGoogle Scholar
  23. 23.
    Brownell, H. H., Yu, E. K. C., and Saddler, J. N. (1986),Biotechnol. Bioeng. 28, 792.CrossRefGoogle Scholar
  24. 24.
    Chum, H. L., Johnson, D. K., Black, S., Baker, J., Grohmann, K., Sarkanen, K. V., Wallace, K., and Schroeder, H. A. (1988),Biotechnol. Bioeng. 31, 643.CrossRefGoogle Scholar
  25. 25.
    Nguyen, Q., Douglas, L. J., Schuler, A. T., and Saddler, J. N. submitted for publication.Google Scholar
  26. 26.
    Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N. (1985),J. Wood Chem. Technol. 5(3), 405.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • W. Schwald
    • 1
  • C. Breuil
    • 1
  • H. H. Brownell
    • 1
  • M. Chan
    • 1
  • J. M. Saddler
    • 1
  1. 1.Forintek Canada Corp.OttawaCanada

Personalised recommendations