Journal of Applied Mathematics and Computing

, Volume 12, Issue 1–2, pp 165–182 | Cite as

On the numerical solutions of integral equation of mixed type



Toeplitz matrix method and the product Nystrom method are described for mixed Fredholm-Volterra singular integral equation of the second kind with Carleman Kernel and logarithmic kernel. The results are compared with the exact solution of the integral equation. The error of each method is calculated.

AMS Mathematics Subject Classification

45B05 45D05 45E05 

Key words and phrases

Fredholm-Volterra integral equation Carleman kernel Toeplitz matrix method product Nystrom method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Abdou,Integral equation of mixed type and integrals of orthogonal polynomials, J. Comp. Appl. Math.138 (2002), 273–285.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M.A. Abdou,Fredholm-Volterra integral equation of the first kind and contact problem, Appl. Math. Comp.125 (2002), 177–193.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M.A. Abdou,Fredholm-Volterra integral equation with singular kernel, Appl. Math. Comp. (2002), (to appear).Google Scholar
  4. 4.
    M.A. Abdou,On asymptotic method in contact problems of Fredholm integral equation of the second kind, Korean. J. Comp. Appl. Math.9 (2002), No. 1, 261–275.MATHMathSciNetGoogle Scholar
  5. 5.
    M.A. Abdou,Integral equation with Cauchy kernel in the contact problem, Korean J. Comp. Appl. Math.7 (2000), No. 3, 663–672.MATHMathSciNetGoogle Scholar
  6. 6.
    M.A. Abdou, and N.Y. Ezz-Eldin,Krein's method with certain singular kernel for solving the integral equations of the first kind, Periodica Math. Hung.28 (1994), No.2, 143–149.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M.A. Abdou and S.A. Hassan,Fredholm integral equation with singular kernel, Korean J. Comp. Appl. Math.7 (2000), No. 1, 223–236.MATHMathSciNetGoogle Scholar
  8. 8.
    M.A. Abdou and S.A. Hassan,Boundary value of contact problem, PUMA,5 (1994), No.3, 311–316.MATHMathSciNetGoogle Scholar
  9. 9.
    M.A. Abdou, S.A. Mohamed and M.A. Darwish,A numerical method for solving the Fredholm integral equation of the second kind, Korean J. Comp. Appl. Math.5 (1998), No.2, 251–258.MATHGoogle Scholar
  10. 10.
    M.A. Abdou and O.L. Moustafa,Fredholm-Volterra integral equation in contact problem, Appl. Math. Comp. (2002), (to appear).Google Scholar
  11. 11.
    N.K. Artiunian,Plane contact problem of the theory of creef, Appl. Math. Mech.23 (1959), 901–923.Google Scholar
  12. 12.
    K.E. Atkinson,The Numerical Solution of Integral Equations of the Second Kind, Cambridge, 1997.Google Scholar
  13. 13.
    K.E. Atkinson,A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia, 1976.MATHGoogle Scholar
  14. 14.
    Christopher and T.H. Baker,Treatment of Integral Equations by Numerical Methods, Academic Press, 1982.Google Scholar
  15. 15.
    C. Constanda,Integral equation of the first kind in plane elasticity, J. Quart. Appl. Math.L111 4 (1995), 783–793.MathSciNetGoogle Scholar
  16. 16.
    L.M. Delves and J.L. Mohamed,Computational Methods for Integral Equations, Cambridge University Press, 1985.Google Scholar
  17. 17.
    A. Dzhuraev,Methods of Singular Integral Equations, London, New York, 1992.Google Scholar
  18. 18.
    M.A. Fahmy, M.A. Abdou and E.I. Deebs,Fredholm-Volterra integral equation of the first kind with potential kernel, Le Mathematiche,LV (2000), 55–74.MathSciNetGoogle Scholar
  19. 19.
    J.I. Frankel,A Galerkin solution to a regularized Cauchy singular integro-differential equation, J. Quart Appl. Math.L11, 2 (1995), 245–258.MathSciNetGoogle Scholar
  20. 20.
    M.A. Golberg,Numerical Solution of Integral Equations. Dover, New York, 1990.MATHGoogle Scholar
  21. 21.
    C.D. Green,Integral Equations Methods, Nelson, New York, 1969.Google Scholar
  22. 22.
    R.P. Kanwal,Linear Integral Equations Theory and Technique, Boston, 1996.Google Scholar
  23. 23.
    N.I. Muskhelishvili,Singular Integral Equations, Mu Publisher, Moscow 1953.MATHGoogle Scholar
  24. 24.
    E. Venturino,The Galerkin method for singular integral equations revisited, J. Comp. Appl. Math.,40 (1992), 91–103.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2003

Authors and Affiliations

  • M. A. Abdou
    • 1
  • Khamis I. Mohamed
    • 2
  • A. S. Ismail
    • 3
  1. 1.Department of Mathematics, Faculty of EducationAlexandria UniversityEgypt
  2. 2.Department of Mathematics, Faculty of ScienceSouth Valley UniversityAswanEgypt
  3. 3.Department of Mathematics, Faculty of ScienceZagazig UniversityEgypt

Personalised recommendations