An optimal pram algorithm for a spanning tree on trapezoid graphs

  • Debashis Bera
  • Madhumangal Pal
  • Tapan K. Pal


LetG be a graph withn vertices andm edges. The problem of constructing a spanning tree is to find a connected subgraph ofG withn vertices andn−1 edges. In this paper, we propose anO(logn) time parallel algorithm withO(n/logn), processors on an EREW PRAM for constructing a spanning tree on trapezoid graphs.

AMS Mathematics Subject Classification

68Q22 68Q25 68R10 

Key words and phrases

Spanning tree trapezoid graphs design and analysis of algorithms parallel algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. Camerini, G. Galbiati and F. Maffioli,Algorithms for finding optimum trees: Description, use and evaluation, Ann. Oper. Res., 13 (1988), 265–397.CrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Deo,Graph theory with Applications to Engineering and computer Science, Prentice Hall of India Private Limited, New Delhi, 1990.Google Scholar
  3. 3.
    M. L. Fredman and R. E. Tarjan,Fibonacci heaps and their uses in network optimization algorithms in Proc. 25-th Ann IEEE symp. on FOCS, (1984), 338–346.Google Scholar
  4. 4.
    H. P. Gabow, Z. Galil, T. Spencer and R. E. Tarjan,Efficient algorithms for finding minimum spanning trees in undirected and directed graphs, Combinatorica, 6 (1986), 109–122.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. R. Gould,Graph Theory, Benjamin/Cummings, Menio Park, CA, 1988.MATHGoogle Scholar
  6. 6.
    M. Hota, M. Pal and T. K. Pal,An efficient algorithm to generate all maximal independent sets on trapezoid graphs, Intern. J. Computer Math, 70 (1999) 587–599.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    P. Klein and C. Stein,A parallel algorithm for eliminating cycles in undirected graphs, Information Processing Letters, 34 (1990), 307–312.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    C. P. Kruskal, L. Rudolph and M. Snir,The power of parallel prefix, IEEE Trans. Computer., 34 (1985), 965–968.Google Scholar
  9. 9.
    J. B. Kruskal,On the shortest spanning subtree of a graph and the travelling salesman problem, Proc. Amer. Math. Soc., 7 (1956), 48–50.CrossRefMathSciNetGoogle Scholar
  10. 10.
    R. C. Prim,Shortest connection networks and some generalizations, Bell Systems Tech. J., 36 (1957), 1389–1401.Google Scholar
  11. 11.
    F. Suraweera and P. Bhattacharya,An O (logm)parallel algorithm for the minimum spanning tree problem, Information Processing Letters, 45 (1993) 159–163.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    R. E. Tarjan,Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.Google Scholar
  13. 13.
    Y. L. Wang, H. C. Chen and C. Y. Lee,An O (logn)parallel algorithm for constructing a spanning tree on permutation graph, Information Processing Letters, 56 (1995), 83–87.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Yao,An O (|E| log log |V|)algorithm for finding minimum spanning tree, Information Processing Letters, 4 (1974), 21–23.CrossRefGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2003

Authors and Affiliations

  • Debashis Bera
    • 1
  • Madhumangal Pal
    • 1
  • Tapan K. Pal
    • 1
  1. 1.Department of Applied Mathematics with Oceanology and Computer ProgrammingVidyasagar UniversityMidnaporeIndia

Personalised recommendations