An epicycloidal boundary of the main component in the degree-n bifurcation set

  • Young Hee Geum
  • Young Ik Kim


It is known that the parametric boundary equation for the main component in the Mandelbrot set represents a cardioid. We derive an epicycloidal boundary equation of the main component in the degree-n bifurcation set by extending the parameter which describes the cardioid in the Mandelbrot set. Computational results as well as some useful properties are presented together with the programming source codes written inMathematica. Various boundaries are displayed for 2≤n≤7 and show a good agreement with the theory presented here. The known boundary equation enables us to significantly reduce the construction time for the degree-n bifurcation set.

AMS Mathematics Subject Classification

00A05 00A69 00A99 

Key words and phrases

Epicycloid bifurcation main component boundary Mandelbrot set ParametricPlot degree-n bifurcation set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lars V. Ahlfors,Complex Analysis, 3rd ed., Mcgraw-Hill Inc, 1979.Google Scholar
  2. 2.
    Michael F. Barnsley,Fractals Everywhere, 2nd ed., Academic Press Professional, 1993.Google Scholar
  3. 3.
    Lennart Carleson and Theodore W. Gamelin,Complex Dynamics, Springer-Verlag, 1995.Google Scholar
  4. 4.
    Robert L. Devaney,An Introduction to Chaotic Dynamical Systems, The Benjamin/Cummings publishing Company, Inc, 1986.Google Scholar
  5. 5.
    Robert L. Devaney,Chaos, Fractals, and Dynamics, Addison-Wesley Inc, 1990.Google Scholar
  6. 6.
    Robert L. Devaney,The Complex Dynamics of Quadratic Polynomials, Proceedings of symposia in Applied Mathematics, Vol. 49, 1994.Google Scholar
  7. 7.
    Robert L. Devaney, The Mandelbrot Set, the Farey Tree, and the Fibonacci Sequence,The American mathematical monthly: the official journal of the Mathematical Association of America, Vol. 106, No. 4, 1999, pp. 289–302.MATHMathSciNetGoogle Scholar
  8. 8.
    Young H. Geum & Young I. Kim, A Study on Computation of Component Centers in the Degree-n Bifurcation Set,Inter. J. Computer Math., Vol. 80, No. 2, 2003, pp. 223–232.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. D. Lawrence,A Catalog of Special Plane Curves, Dover Publications Inc., New York, 1972, pp. 160–164 and 169.MATHGoogle Scholar
  10. 10.
    J. S. Madachy,Madachy's Mathematical Recreations, Dover Publications Inc., New York, 1979, pp. 219–225.Google Scholar
  11. 11.
    James R. Munkres,Topology, 3rd ed., Prentice-Hall Inc, 1975.Google Scholar
  12. 12.
    H. O. Peitgen and P. H. Richter,The Beauty of Fractals, Springer-Verlag, Berlin-Heidelberg, 1986.MATHGoogle Scholar
  13. 13.
    Mitsuhiro Shishikura, The Boundary of the Mandelbrot Set has Hausdorff Dimension Two,Astérisque, Vol. 222, 1994, pp. 389–405.MathSciNetGoogle Scholar
  14. 14.
    Murray R. Spigel,Theory and Problems of Mathematical Handbook of Formulas and Tables, Schaum's Outline Series in Mathematics, McGraw-Hill Inc., 1968.Google Scholar
  15. 15.
    Dirk J. Struik,Lectures on Classical Differential Geometry, 2nd ed., Dover Publications Inc., New York, 1988.MATHGoogle Scholar
  16. 16.
    S. Wagon,Mathematica in Action, W. H. Freeman Inc., 1991, pp. 50–52.Google Scholar
  17. 17.
    Stephen Wolfram,The Mathematica Book, 4th ed., Cambridge University Press, 1999.Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2004

Authors and Affiliations

  1. 1.Department of MathematicsDankook UniversitySeoulKorea
  2. 2.Department of Applied MathematicsDankook UniversityCheonan CityKorea

Personalised recommendations