Advertisement

Journal of Applied Mathematics and Computing

, Volume 13, Issue 1–2, pp 217–222 | Cite as

Stability of a periodic solution for fuzzy differential equations

  • Jae Ug Jeong
Article

Abstract

In this paper, we consider the fuzzy differential equations
$$\frac{{dx(t)}}{{dt}} = F(t,x(t)) and x(t_0 ) = x_0 \in E^n $$
whereF(t,x(t)) is a continuous fuzzy mapping on [0, ∞)×E n . The purpose of this paper is to prove that the solution ϕ(t) of the fuzzy differential equations is equiasymptotically stable in the large and uniformly asymptotically stable in the large.

AMS Mathematics Subject Classification

94D05 34C27 

Key words and phrases

Periodic solution uniformly stable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. K. Hale,Periodic and almost periodic solutions of functional differential equations, Arch. Rational Mech. Anal. 15(1964), 289–304.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. P. LaSalle,A study of synchronous asymptotic stability, Ann. Math. 65(1957), 571–581.CrossRefMathSciNetGoogle Scholar
  3. 3.
    O. Kaleva,Fuzzy differential equations, Fuzzy Sets and Systems 24(1987), 301–317.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    M. L. Puri and D. A. Ralescu,Fuzzy randon variables, J. Math. Anal. Appl. 114 (1986), 409–422.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Seikkala,On the fuzzy initial value problem, Fuzzy Sets and Systems 24(1987), 319–330.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    T. Yoshizawa,Extreme stability and almost periodic solutions of functional differential equations, Arch. Rational Mech. Anal. 17(1964), 148–170.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2003

Authors and Affiliations

  1. 1.Department of MathematicsDong Eui UniversityPusatiKorea

Personalised recommendations