Skip to main content
Log in

Dynamics of a delay-diffusion prey-predator model with disease in the prey

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A mathematical model dealing with a prey-predator system with disease in the prey is considered. The functional response of the predator is governed by a Hoilling type-II function. Mathematical analysis of the model regarding stability and persistence has been performed. The effect of delay and diffusion on the above system is studied. The role of diffusivity on stability and persistence criteria of the system has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Anderson and R. M. May,The population dynamics of macroparasites and their invertebrate hosts, Phil. Trans. Roy. Soc. LondonB291 (1981), 451–524.

    Article  Google Scholar 

  2. R. M. Anderson and R. M. May,Directly transmitted infectious diseases: control by vaccination, Science,215 (1982), 1053–1060.

    Article  MathSciNet  Google Scholar 

  3. R. M. Anderson and R. M. May,The invasion and spread of infectious diseases within animal and plant communities, Philos. Trans. R. Soc. Lond.B314 (1986), 533–570.

    Article  Google Scholar 

  4. R. Bhattacharyya, M. Bandyopadhyay and S. Banerjee,Stability and bifurcation in a diffusive prey-predator system: non-linear bifurcation analysis, J. Appl. Math. & Computing10 (2002), 17–26.

    Article  MathSciNet  Google Scholar 

  5. R. Bhattacharyya, B. Mukhopadhyay and M. Bandyopadhyay,Diffusion driven stability analysis of a prey-predator system with Holling type-IV functional response, System Analysis Modelling Simulation,43(8) (2003), 1085–1093.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Birkhoff and G. C. Rota,Ordinary Differential Equations, Ginn. and Co., 1982.

  7. G. J. Bulter, H. I. Freedman and P. Waltman,Uniformly persistent system, Proc. Am. Math. Soc.96 (1986), 425–430.

    Article  Google Scholar 

  8. J. Chattopadhyay, G. Ghosal and K. S. Chaudhuri,Nonselective harvesting of a preypredator community with infected prey, Korean J. Comput. & Appl. Math.6(3) (1999), 601–616.

    MATH  MathSciNet  Google Scholar 

  9. K. Das and A. K. Sarkar,Effect of time delay in an autotroph-herbivore system with nutrient recycling, Korean J. Comput. & Appl. Math.5(3) (1998), 507–516.

    MATH  MathSciNet  Google Scholar 

  10. A. P. Dobson,The population biology of parasite induced changes in host behaviour, Q. Rev. Biol.63 (1988), 139–165.

    Article  Google Scholar 

  11. P. C. Fife,Mathematical Aspects of Reacting and Diffusing Systems, Lect. Notes in Biomathematics,28, Springer, Berlin, Heidelberg, New York, 1979.

    MATH  Google Scholar 

  12. H. I. Freedman and P. Waltman,Persistence in models of three interacting predator-prey populations, Math. Biosci.68 (1984), 213–231.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. I. Freedman and P. Waltman,Persistence in a model of three competitive populations, Math. Biosci.73 (1985), 89–101.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. I. Freedman,A model of predator-prey dynamics as modified by the action of a parasite, Math. Biosci.99 (1990), 143–155.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. C. Gard,Persistence in food chains general interactions, Math. Biosci.51 (1980), 165–174.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. K. Ghosh, J. Chattopadhyay and P.K. Tapaswi, An SIRS epidemic model on a dispersive population, Korean J. Comput. & Appl. Math.,7(3) (2000), 693-

    MATH  MathSciNet  Google Scholar 

  17. K. P Hadeler and H. I. Freedman,Predator-prey populations with parasite infection, J. Math. Biol.27 (1989), 609–631.

    MATH  MathSciNet  Google Scholar 

  18. H. W. Hethcote,A thousand and one epidemic models, InFrontiers in Mathematical Biology, (Ed.) Levin, S.A., Lecture Notes in Biomathematics100, Springer, Berlin, 1994.

    Google Scholar 

  19. J. Hofbauer,General co-operation theorem for hypercycles, Monatsh. Math.91 (1981), 233–240.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. C. Holmes and W. M. Bethel,Modification of intermediate host behaviour by parasite InBehavioral Aspects of Parasite Transmission, No.1 to the Zool. J. Linnean. Soc., (Eds.) Cunning, E. V. and Wright, C. A.51 (1972), 123–149.

  21. V. Hutson and G. T. Vickers,A criterion for permanent co-existence of species with an application to a two prey one predator system, Math. Biosci.63 (1983), 253–269.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Kováis,Spatial inhomogenity due to Turing bifurcation in a system of Gierer-Meinhardt type, J. Appl. Math. & Computing11(1–2) (2003), 125–142.

    Google Scholar 

  23. W. O. Kermack and A. G. Mckendrick,Contributions to the mathematical theory of epidemics, Proc. Roy. Soc.A115 (1927), 700.

    Article  Google Scholar 

  24. R. M. May,Population biology of microparasite infections InMathematical Ecology, (eds.) Hallam, T.G. and Levin, S. A., Biomathematics17, Springer, Berlin, 1986, 405–442.

    Google Scholar 

  25. D. Mukherjee,Uniform persistence in a generalised prey-predator system with parasitic infection, Biosystems,47 (1998), 149–155.

    Article  Google Scholar 

  26. S. Muratori and S. Rinaldi,Low and high frequency oscillations in three-dimensional food chain system, SIAM. J. Appl. Math.52(6) (1992), 1688–1706.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Okubo,Diffusion and Ecological Problems: Mathematical Models, Biomathematics,10, Springer, Berlin, 1980.

    MATH  Google Scholar 

  28. A.M. Turing,The chemical basis of morphogenesis, Philos. R. Sec. Ser.B237 (1952), 37–72.

    Article  Google Scholar 

  29. Y. Xiao and L. Chen,Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci.171 (2001), 59–82.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mukhopadhyay.

Additional information

Banibrata Mukhopadhyay is continuing his research work for the Ph.D. degree in the University of Calcutta. His research interests are Dynamical modeling involving diffusion and delay differential equations with application to complex biological systems.

Rakhi Bhattacharyya has recently submitted her thesis for Ph. D. degree of the University of Calcutta. She has obtained her M. Sc. and M. Phil. degrees from the University of Calcutta. Her research interest focus on stability and bifurcation analysis of dynamical models with application to biological systems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, B., Bhattacharyya, R. Dynamics of a delay-diffusion prey-predator model with disease in the prey. JAMC 17, 361–377 (2005). https://doi.org/10.1007/BF02936062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936062

AMS Mathematics Subject Classification

Keywords and phrases

Navigation