The Botanical Review

, Volume 63, Issue 2, pp 140–181 | Cite as

The Nucellus and Chalaza in monocotyledons: Structure and systematics

  • Paula J. Rudall


The majority of monocotyledons are crassinucellate, including some early-branching taxa (sensu Chase et al., 1995a, 1995b) such asTofieldia, although Araceae are predominantly tenuinucellate. The tenuinucellate condition occurs in a taxonomically wide range of monocotyledons, and there is some congruence between this character and existing monocot topologies at higher levels. For example, present evidence indicates a few tenuinucellate asparagoid clades, including Alliaceae sensu stricto and Hypoxidaceae, possibly two tenuinucellate lilioid lineages, and at least two tenuinucellate commelinoid lineages.

Proximal nucellar structures arise from a multi-layered region of the ovule and include hypostase, enlarged dermal cells and conducting passage (Zuleitungsbahn), haustoria, postaments, podia, and perisperm. In some cases they may represent the same tissues at different developmental stages; in general the last three are seed structures. For example, a postament may be a resistant conducting passage from which the surrounding dermal cells have degenerated, or alternatively a resistant hypostase, although both are nucellar in origin. Such terminological confusions cause problems in establishing homologies. Several characters relating to the nucellus are outlined.


Botanical Review Royal Botanic Garden Outer Integument Archesporial Cell Ovule Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alden, J. 1912. A contribution to the life history ofUvularia sessilifolia. Bull. Torrey Bot. Club.39: 439–446.Google Scholar
  2. Arekal, G. D. &C. D. Nagendran. 1975. Embryo sac ofHydrobryopsis sessilis (Podostemonaceae), origin, organization and significance. Bot. Notizbl.128:332–338.Google Scholar
  3. Arnott, H. J. 1962. The seed, germination and seedling ofYucca. Univ. Calif. Pub!. Bot.35: 1–164.Google Scholar
  4. Ashurmetov, O. A. & S. S. Yengalycheva. In press. Anatomy of ovary and ovule structure inAllium crystallinum Vved. (Alliaceae). Bot. Jahrb. Syst.Google Scholar
  5. Asplund, E. 1920. Studien uber die Entwicklungsgeschichte der Bluten einiger Valerianaceen. Konigl. Svenska Vet.-Akad. Handl.61:1–66.Google Scholar
  6. Aulbach-Smith, C. A. &J. M. Herr. 1984. Development of the ovule and female gametophyte inEustachys petraea andE. glauca (Poaceae). Amer. J. Bot.71:427–438.Google Scholar
  7. Batygina, T. B. 1994. Embryology of flowering plants. Terminology and concepts. Vol. 1. Generative organs of flower. World and Family, St. Petersburg.Google Scholar
  8. — &M. S. Yakolev. 1990. Comparative embryology of flowering plants. Vol. 5. Monocotyledons. Nauka, St. Petersburg.Google Scholar
  9. Berg, R. Y. 1962. Contribution to the comparative embryology of the Liliaceae:Scoliopus, Trillium, Paris andMedeola. Oslo University Press, Oslo.Google Scholar
  10. —. 1978. Development of ovule, embryo sac and endosperm inBrodiaea (Liliales). Nordic J. Bot.25: 1–7.Google Scholar
  11. —. 1996. Development of ovule, embryo sac and endosperm inDipterostemon andDichelostemma (Alliaceae) relative to taxonomy. Amer. J. Bot.83: 790–801.Google Scholar
  12. Björnstad, I. N. 1970. Comparative embryology of Asparagoideae-Polygonatae, Liliaceae. Nytt. Mag. Bot.17:169–207.Google Scholar
  13. Boesewinkel, F. D. 1989. Ovule and seed development in Droseraceae. Acta Bot. Neerl.38:295–311.Google Scholar
  14. Bor, J. R. &F. Bouman. 1974. Development of the ovule and integuments inEuphorbia milii andCodiaeum variegatum. Phytomorphology24: 280–296.Google Scholar
  15. — &R. N. Kapil. 1975.Euphorbia geniculata—ovule to seed. Acta Bot. Neerl.24: 257–268.Google Scholar
  16. Bouman, F. 1984. The ovule. Pages 123–153in B. M. John (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.Google Scholar
  17. Brown, R. C. &H. L. Mogensen. 1972. Late ovule and early embryo development inQuercus gambelii. Amer. J. Bot.59:311–316.Google Scholar
  18. Browne, E.T. 1961. Morphological studiesin Aletris. I. Development of the ovule, megaspores and megagametophyte ofAletris aurea and their connection with the systematics of the genus. Amer. J. Bot.48: 143–147.Google Scholar
  19. Buell, M. F. 1938. Embryogeny ofAcorus calamus. Bot. Gaz.99: 556–568.Google Scholar
  20. Campbell, D. H. 1900. Studies on the Araceae. Ann. Bot.14:1–25.Google Scholar
  21. —. 1905. Studies on the Araceae III. Ann. Bot. 19:329–349.Google Scholar
  22. Capeletti, C. 1927. Processi degenerativi negli ovuli in seuito ad empedita fecondazione. Nuovo Giom. Bot. Ital., n.s.34:409–490.Google Scholar
  23. Cave, M. S. 1941. Megasporogenesis and embryo sac development inCalochortus. Amer. J. Bot.28: 390–394.Google Scholar
  24. —. 1952. Sporogenesis and gametogenesis inOdontostomum hartwegii Torr. Phytomorph.2: 210–214.Google Scholar
  25. —. 1955. Sporogenesis and the female gametophyte ofPhormium tenax. Phytomorph.5:247–253.Google Scholar
  26. —. 1966. The female gametophytes ofLapageria rosea andPhilesia magellanica. Gayana15: 25–31.Google Scholar
  27. —. 1967. The megagametophyte ofAndrocymbium. Phytomorphology17: 233–239.Google Scholar
  28. —. 1975. Embryological studiesof Stypandra (Liliaceae). Phytomorphology25:95–99.Google Scholar
  29. Chase, M. W. & many others. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard.80: 528–580.Google Scholar
  30. —,M. R. Duvall, H. G. Hills, J. G. Conran, A. V. Cox, L. E. Eguiarte, J. Hartwell, M. F. Fay, L. R. Caddick, K. M. Cameron &S. Hoot. 1995a. Molecular systematics of Lilianae. Pages 109–137in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  31. —,D. W. Stevenson, P. Wilkin &P. Rudall. 1995b. Monocot systematics: a combined analysis. Pages 685–730in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: systematics and evolutioa. Royal Botanic Gardens, Kew.Google Scholar
  32. —,P. J. Rudall &J. G. Conran. 1996. New circumscriptions and a new family of asparagoid lilies: genera formerly included inAnthericaceae. Kew Bulletin51: 667–680.Google Scholar
  33. Cheah, C. H. &B. C. Stone. 1975. Embryo sac and microsporangium development inPandanus (Pandanaceae). Phytomorphology25:228–238.Google Scholar
  34. Coe, G. E. 1954. Distribution of carbon in ovules ofZephyranthes drummondii. Bot. Gaz.115:342–346.Google Scholar
  35. Dahlgren, K. V. O.1927. Die Morphologie des Nuzellus mit besonderer Berucksichtigung der deckzellosen Typen. Jahrb. Wiss. Bot.67: 347–426.Google Scholar
  36. —. 1939. Endosperm und Embryobildung beiZostera marina. Bot. Notizbl.1939: 607–615.Google Scholar
  37. —. 1940. Postamentbildung in den Embryosäcken der Angiospermen. Bot. Notizbl.1940:347–369Google Scholar
  38. Dahlgren, R. M. T. 1975. The distribution of characters within an angiosperm system. I. Some embryological characters. Bot. Notizbl.128:181–197.Google Scholar
  39. — &H. T. Clifford. 1982. The monocotyledons—a comparative study. Academic Press, London.Google Scholar
  40. — &A. M. Lu. 1985.Campynemanthe (Campynemaceae): morphology, microsporogenesis, early ovule ontogeny and relationships. Nordic J. Bot.5: 321–330.Google Scholar
  41. ——. &P. F. Yeo. 1985. The families of the monocotyledons. Berlin: Springer-Verlag.Google Scholar
  42. Davis, G. L. 1966. Systematic embryology of the angiosperms. John Wiley, New York.Google Scholar
  43. De Vos, M. P. 1949. The development of the ovule and the seed in the Hypoxideae. II. The generaPauridia Harv. andForbesia Ecklon. J. S. Afr. Bot.15: 13–22.Google Scholar
  44. —. 1950. Die ontwikkeling van die saadknop en saad byCyanella capensis L: “n geval van polyembryonie. S. Afr. J. Sci.46:220–226.Google Scholar
  45. Dutt, B. M. S. 1970. Comparative embryology of angiosperms: Haemodoraceae, Cyanastraceae, Amaryllidaceae, Hypoxidaceae, Velloziaceae. Bull. Indian Natn. Sci. Acad.41: 358–374.Google Scholar
  46. Endress, P. K. 1987. The Chloranthaceae: reproductive structures and phylogenetic position. Bot. Jahrb. Syst.109: 153–226.Google Scholar
  47. —. 1990. Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). Mem. New York Bot. Gard.55: 5–34.Google Scholar
  48. —. 1994. Floral structure and evolution of primitive angiosperms: recent advances. Pl. Syst. Evol.192: 79–97.Google Scholar
  49. Engler, A. 1901. Beitrage zur Flora von Afrika XX: Berichte über die botanischen Ergebnisse der Nyassa-Secund Kinga-Gebirgs-Exped.,Cyanastraceae. Bot. Jahrb.28: 357.Google Scholar
  50. Eunus, A. M. 1950. Contributions to the embryology of the Liliaceae. I. Development of the embryo sac and endosperm ofAlbuca transvalensis Moss-Verdoom. J. Indian. Bot. Soc.29: 68–78.Google Scholar
  51. —. 1951. Contributions to the embryology of the Liliaceae. V. Life history ofAmaianthium muscaetoxicum Walt. Phytomorphology1: 73–79.Google Scholar
  52. Fagerlind, F. 1940. Stempelbau und Embryosackentwicklung bei einigen Pandanazeen. Ann. Jard. Bot. Buitenzorg49: 55–78.Google Scholar
  53. Fay, M. &M. W. Chase. 1996. Resurrection of Themidaceae for theBrodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae. Taxon45:441–451.Google Scholar
  54. Fries, T. C. E. 1919. Der Samenbau beiCyanastrum. Svensk. Bot. Tidskr. 13:295–304.Google Scholar
  55. Gäumann, E. 1919. Studien über die Entwicklungsgeschichter eineger Saxifragales. Rec. D. Trav. Bot. Néerl.16:285–322.Google Scholar
  56. Goldblatt, P. 1986. Systematics and relationships of the bigeneric Pacific family Campynemataceae (Liliales). Bull. Mus. Natl. Hist. Nat, Paris, ser. 4, 8, B, Adansonia 117–132.Google Scholar
  57. Graven, P., C. G. De Koster, J. J. Boon &F. Bouman. 1996. Structure and macromolecular composition of the seed coat of the Musaceae. Ann. Bot.77:105–122.Google Scholar
  58. Grayum, M. H. 1991. Systematic embryology of the Araceae. Bot. Rev.57:167–203.Google Scholar
  59. Grootjen, C. J. 1983a. Development of ovule and seed in Marantaceae. Acta Bot. Neerl. 32:69–86.Google Scholar
  60. —. 1983b. Development of ovule and seed inCartonema spicatum R.Br. (Cartonemataceae). Austral. J. Bot.31:297–305.Google Scholar
  61. — &F. Bouman. 1988. Seed structure in Cannaceae: taxonomic and ecological implications. Ann. Bot.61:363–371.Google Scholar
  62. Grove, A. R. 1941. Morphological study ofAgave lechuguilla. Bot. Gaz.103: 354–365.Google Scholar
  63. Haberlandt, G. 1923. Zur embryologie vonAllium odorum. Ber. Deutsch. Bot. Gesell.41:174–179.Google Scholar
  64. Haeckel, I. 1930. Uber Iridaceen. Flora125:1–82.Google Scholar
  65. Hamann, U. 1964. Embryologie und Systematik am Beispiel der Farinosae. Ber. Deutsch. Bot. Ges.77: 45–54.Google Scholar
  66. —. 1966. Embryologische, morphologisch—anatomische und systematische Untersuchungen an Philydraceen. Willdenowia 4: 1–178.Google Scholar
  67. —. 1975. Neue Untersuchungen zur Embryologie und Systematik der Centrolepidaceae. Bot. Jahrb. Syst.96:154–191.Google Scholar
  68. —. 1976. Hydatellaceae—a new family of Monocotyledoneae. New Zealand J. Bot.14:193–196.Google Scholar
  69. Haque, A. 1951. The embryo sac ofErythronium americamm. Bot. Gaz.112: 495–500.Google Scholar
  70. Herr, J. M. 1995. The origin of the ovule. Amer. J. Bot.82: 547–564.Google Scholar
  71. Horner, H. T. &H. J. Arnott. 1966. Histochemical and ultrastructural study of pre-and postgerminatedYucca seeds. Bot. Gaz.127:48–64.Google Scholar
  72. Huss, H. A. 1906. Beitr ge zur Morphologie und Physiologie der Antopoden. Beih. Bot. Zbl.20:77–174.Google Scholar
  73. Jobansen, D. A. 1928. The hypostase: its presence in the ovule of Onagraceae. Proc. Natl. Acad. Sci. U.S.A.14: 710–713.Google Scholar
  74. Kellogg, E. A. &H. P. Linder. 1995. Phylogeny of Poales. Pages 511–542in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  75. Kenton, A. &P. Rudall. 1987. An unusual case of complex-heterozygosity inGelasine azurea (Iridaceae), and its implications for reproductive biology. Evolutionary Trends in Plants1:95–103.Google Scholar
  76. Kuo, J., H. Iizumi, B. E. Nilsen &K. Aioi. 1990. Fruit anatomy, seed germination and seedling development in the Japanese seagrassPhyllospadix (Zosteraceae). Aquatic Bot.37:229–245.Google Scholar
  77. Linder, H. P. &E. A. Kellogg. 1995. Phylogenetic patterns in the commelinid clade. Pages 473–496in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  78. — &P. Rudall. 1993. The megagametophyte inAnarthria and its relatives: systematic implications. Amer. J. Bot.80:1455–1464.Google Scholar
  79. Lu, A. M. 1985. Embryology and probable relationships ofEriospermum (Eriospermaceae). Nordic J. Bot.5: 229–240.Google Scholar
  80. Maheshwari, P. 1950. An introduction to the embryology of angiosperms. McGraw-Hill, New York.Google Scholar
  81. Makde, K. H. 1981. Hypostase in Cyperaccae. Curr. Sci.50:421–422.Google Scholar
  82. Masand, P. &R. N. Kapil. 1966. Nutrition of the embryo sac and embryo—a morphological approach. Phytomorphology16: 158–175.Google Scholar
  83. Maze, J. &L. R. Bohm. 1973. Comparative embryologyof Stipa elmeri. Canad. J. Bot.51: 235–247.Google Scholar
  84. Menezes, N. L. de. 1976. Megasporogenése, megagametogenése e embriogenése em Velloziaceae. Bol. Bot., Univ. São Paulo4:41–60.Google Scholar
  85. Monteiro-Scanavacca, W. R. &S. C. Mazzoni. 1978. Embryological studies inLeiothrix fluitans (Mart.) Ruhl. (Eriocaulaceae). Revista Bras. Bot.1: 59–64.Google Scholar
  86. Mücke, M. 1908. Uber den Bau und die Entwicklung der Früchte und über die Herkunft vonAcorus calamus L. Bot. Zeit.66: 1–123.Google Scholar
  87. Müller-Doblies, D. 1970. Über die Verwandtschaft vonTypha undSparganium in Inflorescenz-und Blütenbau. Bot. Jahrb. Syst.89:451–562.Google Scholar
  88. Müller-Doblies, U. 1969. Über die Blutenstände und Blüten sowie zur Embryologie vonSparganium. Bot. Jahrb. Syst.89: 359–450.Google Scholar
  89. Nietsch, H. 1941. Zur systematischen Stellung vonCyanastrum. Ost. Bot. Z.90:31–52.Google Scholar
  90. Ogura, H. 1964. On the embryo sac of two species ofTricyrtis. Sci. Rep. Tohoku Univ., ser. 4 (Biol.)30: 219–222.Google Scholar
  91. Oikawa, K. 1961. The embryo sac ofChionographis japonica Maxim. Sci. Rep. Tohoku Univ., ser 4 (Biol.)27:155–158.Google Scholar
  92. Ono, T. 1926. Embryologische Studien anHeloniopsis breviscapa. Sci. Rep. Tohoku Univ., ser. 4,2: 93–104.Google Scholar
  93. —. 1929. Embryologie der Liliaceae, mit besonderer Rucksicht auf die Endospermbildung. I. Melanthioideae und Aletroideae. Sci. Rep. Tohoku Univ., ser. 4,4:381–393.Google Scholar
  94. Palm, B. 1915. Studien uber Konstruktionstypen und Entwicklungswege des Embryosackes der Angiospermen. Ph.D. dissertation, University of Stockholm.Google Scholar
  95. Palser, B. F. 1975. The bases of angiosperm phylogeny: embryology. Ann. Missouri Bot. Gard.62: 621–646.Google Scholar
  96. Pate, J. S. &B. E. S. Gunning. 1972. Transfer cells. Ann. Rev. Pl. Physiol.23:173–196.Google Scholar
  97. Pbilipson, W. R. 1974. Ovular morphology and the major classification of the dicotyledons. Bot. J. Linn. Soc.68: 89–108.Google Scholar
  98. Poole, A. L. 1952. The development of theNothofagus seed. Trans. Roy. Soc. New Zealand80: 207–212.Google Scholar
  99. Robbing, W. W. &H. A. Borthwick. 1925. Development of the seed ofAsparagus officinalis. Bot Gaz.80: 426–438.Google Scholar
  100. Robertson, B. L. 1976. Embryology ofJubaeopsis caffra Becc: 2. Megasporangium, megasporogenesis and megagametogenesis. J. South African Bot.42:173–184.Google Scholar
  101. Rombach, S. 1911. Die entwicklung der Samenknospe bei den Crassulaceen. Rec. Trav. Bot. Néerl.8: 182–200.Google Scholar
  102. Rudall, P. J. 1990. Development of the ovule and megagametophyte inEcdeiocolea. Austral. Syst. Bot.3: 265–274.Google Scholar
  103. —. 1994. The ovule and embryo sac in Xanthorrhoeaceaesensu lato. Flora189:335–351.Google Scholar
  104. — &M. W. Chase. 1996. Systematics of Xanthorrhoeaceaesensu lato: evidence for polyphyly. Telopea6:629–647.Google Scholar
  105. — &L. Clark. 1992. The megagametophyte in Labiatae. Pages 65–84in R. M. Harley & T. R. Reynolds (eds.), Advances in Labiate Science. Royal Botanic Gardens, Kew.Google Scholar
  106. — &H. P. Linder 1988. The megagametophyte and nucellus in Restionaceae and Flagellariaceae. Amer. J. Bot.75:1777–1786.Google Scholar
  107. —,S. J. Owens &A. Y. Kenton. 1984. Embryology and breeding systems inCrocus (Iridaceae), a study in causes of chromosome variation. PL Syst. Evol.148:119–134.Google Scholar
  108. -,E. M. Engleman, L. Hansen & M. W. Chase. In press. Systematics and embryology ofHemiphylacus, Anemarrhena and Asparagaceae. PL Syst. Evol.Google Scholar
  109. -,M. W. Chase, D. F. Cutler & J. Rusby. Submitted. Anatomical and molecular systematics of Asteliaceae and Hypoxidaceae. Bot. J. Linn. Soc.Google Scholar
  110. Schlimbach, H. 1924. Beitrage zur Kenntnis der Samenanlagen und Samen der Amaryllidaceen imit Berucksichtigung des Wassergehaltes der Samen. Flora117:41–54.Google Scholar
  111. Schnarf, K. 1928. Über das Embryosackhaustorium beiAnthericum. Oesterr. Bot. Zeit.77: 287–291.Google Scholar
  112. —. 1971.Capsella embryogenesis: the chalazal proliferating tissue. J. Cell Sci.8:201–227.Google Scholar
  113. Steinecke, H. &U. Hamann. 1989. Embryologisch-systematische Untersuchungen an Haemodoraceen. Bot. Jahrb. Syst.111:247–262.Google Scholar
  114. Stenar, H. 1925. Embryologische Studien I. und II. II. Die Embryologie der Amaryllideen. Pages 79–195. Ph.D. dissertation, Uppsala.Google Scholar
  115. —. 1927. Uber die Entwicklung des siebenkemigen Embryosackes beiGagea lutea Ker. nebst einigen Bemerkungen uber die Reduktions—teilung beiGagea minima Ker. Svensk Bot. Tidskr.21: 344–360.Google Scholar
  116. —. 1928. Zur Embryologie derVeratrum-und Anthericum-Gmppen. Bot. Notizbl.1928:357–378.Google Scholar
  117. —. 1932. Studien uber die Entwicklungsgeschichte vonNothoscordum fragrans Kunth undNothoscordum striatum Kunth. Svensk Bot. Tidskr.26:25–44.Google Scholar
  118. —. 1933. Zur embryologie derAgapanthus-Gruppe. Bot. Notizbl.1933: 520–530.Google Scholar
  119. —. 1952. Notes on the embryology and anatomyof Luzuriaga latifolia Poir. Acta Horti Berg.16: 219–232.Google Scholar
  120. Stevenson, D. W. &H. Loconte. 1995. Cladistic analysis of monocot families. Pages 543–578in P. J. Rudall, P. J. Cribb, D. F. Cutler & C. J. Humphries (eds.), Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
  121. Subramanyam, K. &L. L. Narayana. 1972. Some aspects of the floral morphology and embryology ofFlagellaria indica Linn. Pages 211–217in Y S. Murty, B. M. Johri, H. Y M. Ram & T. M. Varghese (eds.), Advances in plant morphology. Sarita Prakashan, Meerut.Google Scholar
  122. Takaso, T. &F. Bouman. 1986. Ovule and seed ontogeny inGnetum gnemon L. Bot. Mag., Tokyo99: 241–266.Google Scholar
  123. Tieghem, P. van. 1866. Recherches sur la structure des Aroidees. Ann. Sci. Nat., Bot., ser. 5,6:72–210.Google Scholar
  124. —. 1898. Structure de quelques ovules et parti qu’on en peut tirer am liorer la classification. J. Bot. (Paris)12: 197–220.Google Scholar
  125. —. 1901. L’oeuf des plantes consid re comme base de leur classification. Ann. Sci. Nat., Bot., ser. 8,14:213–390.Google Scholar
  126. Tilton, V. R. 1980a. The nucellar epidermis and micropyleof Ornithogalum caudatum (Liliaceae) with a review of these structures in other taxa. Canad. J. Bot.58:1872–1884.Google Scholar
  127. —. 1980b. Hypostase development inOrnithogalum caudatum (Liliaceae) and notes on other types of modifications in the chalaza of angiosperm ovules. Canad. J. Bot.58: 2059–2066.Google Scholar
  128. Varitchak, B. 1940. Le développement du sac embryonaire et le nombre des chromosomes chez la planteNarthecium scardicum Kosanin. Bull. Acad. Sci. Math. Nat. Belgrade6B: 97–105.Google Scholar
  129. Venkateswarlu, J., P. Sarojni Devi &A. Nirmala. 1980. Embryological studies inEleutherine plicata Herb, andBelamcanda chinensis Lern. Proc. Indian Acad. Sci. (P1. Sci.).89: 361–367.Google Scholar
  130. Venturelli, M. &F. Bouman. 1986. Embryology and seed development inMayaca fluviatilis (Mayacaceae). Acta Bot. Neerl.35:497–516.Google Scholar
  131. ——. 1988. Development of ovule and seed in Rapateaceae. Bot. J. Linn. Soc.97:267–294.Google Scholar
  132. Westermaier, M. 1890. Zur Embryologie der Phanerogamen, inbesondere uber die sogenannten Antipoden. Nova Acata d. Ksl. Leop. -Carol. Deutschen Akad. d Naturforscher 57.Google Scholar
  133. —. 1897. Zur physiologie und morphologie der Angiospermen-Samenknospe. Beitr. Wiss. Bot.1: 255–280.Google Scholar
  134. Wiegand, K. M. 1900. The development of the embryo-sac in some monocotyledonous plants. Bot. Gaz.30:25–47.Google Scholar
  135. Wilms, H. J. 1980. Development and composition of the spinach ovule. Acta Bot. Neerl.29:243–260.Google Scholar
  136. Young, D. J. &L. Watson. 1970. The classification of dicotyledons: a study of the upper levels of the hierarchy. Austral. J. Bot.18:387–433.Google Scholar
  137. Yu-fen, L. &S. Jia-Heng. 1990. The studies on embryology inFritillaria ussuriensis Maxim. Acad. Bot. Sin.32: 499–504.Google Scholar

Copyright information

© The New York Botanical Garden 1997

Authors and Affiliations

  • Paula J. Rudall
    • 1
  1. 1.Jodrell LaboratoryRoyal Botanic GardensRichmondUK

Personalised recommendations