Biotechnology and Bioprocess Engineering

, Volume 7, Issue 1, pp 10–15 | Cite as

Effect of culture conditions on growth and production of docosahexaenoic acid (DHA) usingThraustochytrium aureum ATCC 34304

  • Byung-Ki Hur
  • Dae-Won Cho
  • Ho-Jung Kim
  • Chun-Ik Park
  • Hyung-Joon Suh


Environmental and medium factors were investigated as basic data for optimizing DHA production when usingThraustochytrium aureum. To study the effect of environmental conditions, the rotation speed and culture temperature were, changed. Plus the trend of the growth characteristics, lipid content in the biomass, and DHA content in lipids were evaluated according to various initial glucose concentrations. The biomass, lipid, and DHA analyses showed that the physiological characteristics ofT. aureum were closely related with the environmental and medium conditions, as in the case of other marine microorganisms. For example, a low rotation speed of 50 rpm lowered the cell growth rate as well as the DHA content in the lipids. A low temperature had a negative effect on the cell growth, yet a positive effect on the lipid content in the biomass. Different initial glucose concentrations had no effect on the lipid content in the biomass or DHA content in the lipids, yet did affect the cell growth. Accordingly, these results show that environmental and medium factors must be synthetically considered in order to optimize DHA production when usingT. aureum.


DHA production Thraustochytrium aureum environmental factors glucose concentration effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Singh, A. and O. P. Ward (1996) Production of high yields of docosahexaenoic acid byThraustochytrium roseum ATCC 28210.J. Ind. Microbiol. 12: 370–373.CrossRefGoogle Scholar
  2. [2]
    Ward, O. P. (1995) Microbial production of long-chain PUFAs.INFORM 6: 683–688.Google Scholar
  3. [3]
    Bazan, N. G., T. S. Reddy, H. E. P. Bazan, and D. L. Brikle (1986) Metabolism of arachidonic and docosahexaenoic acid in the retina.Prog. Lipid Res. 25: 595–606.CrossRefGoogle Scholar
  4. [4]
    Uauy, R. D., D. G. Brich, E. Z. Brich, J. E. Tyson, and D. R. Hoffman (1990) Effect of dietary omega-3 fatty acids on retinal function of very-low-brith-weight neonates.Pediar. Res. 28: 485–492.CrossRefGoogle Scholar
  5. [5]
    Connor, W. E., N. Martha, and D. S. Lin (1990) Dietary effects on brain fatty acid composition, the reversibility of n-3 fatty acid deficiency and turnover of doecosahexaenoic acid in brain, erythrocyte and plasma of rhesus monkey.J. Lipid Res. 31: 237–247.Google Scholar
  6. [6]
    Bajpai, P. K., P. Bajpai, and O. P. Ward (1991) Optimization of production of docosahexaenoic acid (DHA) byThraustochytrium aureum ATCC 34304.JAOCS 68: 509–514.CrossRefGoogle Scholar
  7. [7]
    Jseph, J. D. (1975) Identification of 3, 6, 9, 12, 15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates.Lipids 10: 395–403.CrossRefGoogle Scholar
  8. [8]
    Patton, S., G. Fuller, A. R. Loehlich, and A. A. Benson (1966) Fatty acids of the ‘red tide’ organismGonyaulax polyedra.Biochem. Biophys. Acta 116: 577–579.Google Scholar
  9. [9]
    Withers, N. W. and J. C. Nevenzel (1977) Phytyl esters in a marine diflagellate.Lipids 12: 989–993.CrossRefGoogle Scholar
  10. [10]
    Tyrrell, D. (1967) The fatty acid composition of in Entomophthora isolates.Can. J. Microbiol. 13: 755–760.CrossRefGoogle Scholar
  11. [11]
    Shaw, R. (1965) The occurrence of gamma-linolenic acid in fungi.Biochem. Biophys. Acta 98: 230–237.Google Scholar
  12. [12]
    De Long, E. F. and A. A. Yayanos (1986) Biochemical function and ecological significance of novel bacterial lipid in deep-sea prokaryotes.Appl. Environ. Microbiol. 51: 730–737.Google Scholar
  13. [13]
    Yano, Y., A. Nakayama H. Saito, and K. Ishihara (1994) Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish.Lipids 29: 527–528.CrossRefGoogle Scholar
  14. [14]
    Yokochi, T., D. Honda, T. Higashihara, and T. Nakahara (1998) Optimization of docosahexaenoic acid production bySchizochytrium limacium SR21.Appl Microbiol. Biotechnol. 49: 72–76.CrossRefGoogle Scholar
  15. [15]
    Wichien, Y. M. and P. W. Owen (1989) Omega-3 fatty acids: Alternative sources of production.Process Biochem. 24: 117–125.Google Scholar
  16. [16]
    Sajbidor, J., S. Dobronova, and M. Certik (1990) Atachidonic acid production byMortiesella sp. S-17. Influence of C/N ratio.Biotechnol. Lett. 12: 455–456.CrossRefGoogle Scholar
  17. [17]
    Peberdy, J. F. and D. K. Toomer (1975) Effect of nutrient starvation on the utilization of storage lipids inMortiesella ramaruiana.Microbios. 13: 123–131.Google Scholar
  18. [18]
    Radwan, S. S. and A. H. Soliman (1988) Arachidonic acid from fungi utilizing fatty acids with short chains as sole sources of carbon and energy.J. Gen. Microbiol. 134: 387–393.Google Scholar
  19. [19]
    Yue, J. and F. Chen (2000) Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophicCrypthecodinium cohnii.Process Biochem. 35: 1205–1209.CrossRefGoogle Scholar
  20. [20]
    Neidelman, S. L. (1987) Effect of temperature on lipid unsaturation.Biotechnol. Eng. Rev. 5: 245–268.Google Scholar
  21. [21]
    Stinson, I. E., R. Kwoczak, and M. J. Kuruntz (1991) Effect of cultural conditions on production of eicosapentaenoic acid byPythium irregulare.J. Ind. Microbiol. 8: 171–178.CrossRefGoogle Scholar
  22. [22]
    Cohen, Z., A. Vonshek, and A. Richmond (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions.Phytochem. 26: 2255–2258.CrossRefGoogle Scholar
  23. [23]
    Lepage, C. and C. C. Roy (1984) Improved recovers of fatty acid a through direct of transesterification without prior extraction and purification.J. Lipid Res. 25: 1391–1396.Google Scholar
  24. [24]
    Iida, I., T. Nakahara, T. Yokochi, Y. Kamisaka, H. Yagi, M. Yamaoka, and O. Suzuki (1996) Improvement of docosahexaenoic acid production in a culture ofThraustochytrium aureum by medium optimization.J. Ferment. Bioeng. 81: 76–78.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2002

Authors and Affiliations

  • Byung-Ki Hur
    • 1
  • Dae-Won Cho
    • 1
  • Ho-Jung Kim
    • 1
  • Chun-Ik Park
    • 1
  • Hyung-Joon Suh
    • 2
  1. 1.Department of Biotechnology and BioengineeringInha UniversityIncheonKorea
  2. 2.Department of Environmental EngineeringInha UniversityIncheonKorea

Personalised recommendations