Skip to main content
Log in

The space-time fractional diffusion equation with Caputo derivatives

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order β∈(0, 2] and the first-order time derivative with Caputo derivative of order α∈(0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Agrawal,Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics29 (2002), 145–155.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. V. Anh and N. N. Leonenko,Non-Gaussian scenarios, for the heat equation with singular initial conditions, Stochastic Processes and their Applications84 (1) (1999), 91–114.

    Article  MathSciNet  Google Scholar 

  3. V. V. Anh and N. N. Leonenko, Scaling laws for fractional diffusion-wave equations with singular data, Statistics and Probability Letters Volume48 (3), (2000), 239–252.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. V. Anh and N. N. Leonenko,Spectral analysis of fractional kinetic equations with random data, J. Stat. Physics,104, N5/6 (2001), 1349–1387.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. V. Anh and N. N. Leonenko,Renormalization and homogenization of fractional diffusion equations with random data, Probab. Theory Rel. Fields124 (2002), 381–408.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. V. Anh and N. N. Leonenko,Harmmonic analysis of fractional diffusion-wave equations, Applied Math. Comput.48 (3) (2003), 239–252.

    MathSciNet  Google Scholar 

  7. M. Basu and D. P. Acharya,On quadratic fractional generalized solid bi-criterion, J. Appl. Math. & Computing (old: KJCAM)10 (2002), 131–144.

    MATH  MathSciNet  Google Scholar 

  8. M. Caputo,Linear model of dissipation whose Q is almost frequency indepent-II, Geophys. J. R. Astr. Soc.13 (1967), 529–539.

    Google Scholar 

  9. M. Caputo,The Green function of the diffusion of fluids in porous media with memory, Rend, Fis. Acc. Lincei (Ser. 9)7 (1996), 243–250.

    Article  MATH  Google Scholar 

  10. M. M. Djrbashian,Integral transforms and representations of functions in the complex plane, Nauka, 1966 (in Russian).

  11. A. M. A. El-Sayed and M. A. E. Aly,Continuation theorem of fractionalorder evolutionary integral equations, J. Appl. Math. & Computing (old: KJCAM)9 (2) (2002), 525–534.

    MATH  MathSciNet  Google Scholar 

  12. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi,Higer transcendental functions, New York, McGraw-Hill Vol. 3, 1953-1954.

    Google Scholar 

  13. W. Feller,On a generalization of Marcel Riesz's potentials and the semigroups generated by them, Meddelanden lunds Universitets Matematiska Seminarium (Comm. Sém. M..a.thém. Université de Lund), Tome suppl. dédié à M. Riesz, Lund, pp. 73–81, 1952.

  14. Y. Fujita,Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka, J. Math.27 (1990), 309–321.

    MATH  MathSciNet  Google Scholar 

  15. A. A. Kilbas, T. Pierantozzi and J. Trujillo,On the solution of fractional evolution equations, J. Phys. A: Math. Gen.37 (2004), 3271–3283.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Gorenflo, Yu. Luchko and F. Mainardi,Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comp. Appl. Math.118 (2001), 175–191.

    Article  MathSciNet  Google Scholar 

  17. R. Gorenflo and F. Mainardi,Fractional calculus: integral and differential equations of fractional order, in A. Carpinteri and Mainardi (Editors), Fractals and Fractional Calculus in Continuum Mechanics, Wien and New York, Springer Verlag., pp. 223–276, 1997.

    Google Scholar 

  18. R. Gorenflo and F. Mainardi,Random walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis1, (1998), 167–191.

    MATH  MathSciNet  Google Scholar 

  19. R. Gorenflo and F. Mainardi,Approximation of Lévy-Feller diffusion by random walk, Journal for Analysis and its Applications (ZAA)18 (1999), 231–246.

    MATH  MathSciNet  Google Scholar 

  20. R. Gorenflo and F. Mainardi, D. Moretti, G. Pagnini,Time-fractional diffusion: a discrete random walk approach, Nonlinear Dynamics29 (2002), 129–143.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Gorenflo and F. Mainardi, D. Moretti and G. Pagnini,Disctete random walk models for space-time fractional diffusion, Chemical Physics284 (2002), 521–541.

    Article  Google Scholar 

  22. R. Hilfer,Exact solutions for a class of fractal time random walk, Fractals3 (1995), 211–216.

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Huang and F. Liu,The time fractional diffusion equation and advection-dispersion equation, the Australian and New Zealand Industrial and Applied Mathematic Journal (ANZIAM), (2004), in press.

  24. F. Liu, V. V. Anh, I. Turner and P. Zhuang,Time Fractional Asvection-dispersion Equation, J. Appl. Math. & Computing13 (2003), 233–245.

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Liu, V. V. Anh and I. Turner,Numerical, solution of the space fractional Fokker-Plank Equation., J. Comp. Appl. Math166 (2004), 209–219.

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Mainardi,Fraction calculus: some basic problems in continuum and statistical mechanics (A. Carpinteri, F. Mainardi, Eds.),Fractal and Fractional Calin Continuum Mechanics, Springer, Wien, pp. 291–348, 1997.

    Google Scholar 

  27. F. Mainardi, Yu. Luchko and G. Pagnini,The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis4 (2001), 153–1925.

    MATH  MathSciNet  Google Scholar 

  28. M. M. Meerschaert and X. Tadjeran,Finite difference approximations for fractional advection-dispersion flow, equations, J. Appl. Math. and Computing, (2004) in press.

  29. P. J. Olver,Applications of Lie Groups to Differential Equations, Springer, New York, 1986.

    MATH  Google Scholar 

  30. I. Podlubny,Fractional differential equations, Academic press, San Diego, 1999.

    MATH  Google Scholar 

  31. A. Saichev and G. Zaslavsky,Fractional kinetic equations: solutions and applications, Chaos7 (1997), 753–764.

    Article  MATH  MathSciNet  Google Scholar 

  32. W. R. Schneider and W. Wyss,Fractional diffusion and wave equations, J. Math. Phys.30 (1) (1989), 134–144.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. Schumer, D. A. Benson, M. M. Meerschaert and S. W. Wheatcraft,Eulerian derivation of the fractional advection-dispersion equation, J. Contaminant Hydrology48 (2001), 69–88.

    Article  Google Scholar 

  34. W. Wyss,The fractional diffusion equation., J. Math. Phys.27 (11) (1986), 2782–2785.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Additional information

Fawang Liu received his MSc from Fuzhou University in 1982 and PhD from Trinity College, Dublin, in 1991. Since graduation, he has been working in computational and applied mathematics at Fuzhou University, Trinity College Dublin and University College Dublin, University of Queensland, Queensland University of Technology and Xiamen University. Now he is a Professor at Xiamen University. His research interest is numerical analysis and techniques for solving a wide variety of problems in applicable mathematics, including semiconductor device equations, microwave heating problems, gas-solid reactions, singular perturbation problem, saltwater intrusion into aquifer systems and fractional differential equations.

Fenghui Huang received her MSc and PhD from Xiamen University, Xiamen, China, in 2001 and 2004. Now She is a lecturer at South China University of Technology. Her research interest is numerical computation for PDE, especially, solving the variety of problems in the Computational Fluid Dynamics, such as incompressible fluid flow and turbulence. She also pay respect to some applied problems in fractional differential equations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F., Liu, F. The space-time fractional diffusion equation with Caputo derivatives. JAMC 19, 179–190 (2005). https://doi.org/10.1007/BF02935797

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935797

AMS Mathematics Subject Classification

Key words and phrases

Navigation