, Volume 3, Issue 6, pp 395–398 | Cite as

Estrogens decrease expression of the corticotropin-releasing factor gene in the hypothalamic paraventricular nucleus and of the proopiomelanocortin gene in the anterior pituitary of ovariectomized rats

  • Michel Grino
  • Micheline Héry
  • Odile Paulmyer-Lacroix
  • Geneviève Anglade


It is known that estrogens modulate the hypothalamopituitary—adrenal (HPA) axis both under resting conditions and during exposure to stress. Nevertheless, the site of action of estrogens is not still fully elucidated. We sought to determine if estrogens could act on the major hypothalamic ACTH secretagogue: corticotropin-releasing factor (CRF). Mature rats were ovariectomized (OVX) and 2 weeks later implanted with silastic capsules containing 17β-estradiol (E2). Animals were sacrificed 7 days later. CRF mRNA in the hypothalamic paraventricular nucleus (PVN) and proopiomelanocortin (POMC) mRNA in the anterior pituitary were measured byin situ hybridization. CRF content in the median eminence was measured by semiquantitative immunocytochemistry. E2 treatment induced a significant decrease of CRF mRNA levels in the PVN (3.70±0.14vs 4.79±0.15 copies of probe×10−3/μm3 of tissue in OVX rats,P<0.05), an accumulation of immunoreactive CRF in the zona externa of the median eminence (207±36vs 100±15% in OVX rats,P<0.05), and a decrease of POMC mRNA levels in the anterior pituitary (4.6±0.6vs 6.9±0.6 copies of probe ×10−2/μm3 of tissue in OVX rats,P<0.05). These results demonstrate that estrogens have a negative effect on CRF gene expression and secretion and on POMC gene expression. Whether estrogens modulate directly the CRF-synthesizing cells or act through an increase of the glucocorticoid negative feedback remains to be determined.


Estrogens corticotropin-releasing factor proopiomelanocortin paraventricular nucleus anterior pituitary in situ hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohler Jr, H.C.L., Zoeller, R.T., King, J.C., Rubin, B.S. & Merriam, G.R. (1990).Mol. Brain Res.,8, 259–262.PubMedCrossRefGoogle Scholar
  2. Burgess, L.H. & Handa, R.J. (1992)Endocrinology,131, 1261–1269.PubMedCrossRefGoogle Scholar
  3. Coyne, M.D. & Kitay, J.I. (1969)Endocrinology,85, 1097–1102.PubMedGoogle Scholar
  4. Critchlow, V, Liebelt, R.A., Bar-Sela, M., Mountcastle, W. & Lipscombe, H.S. (1963).Am. J. Physiol.,205, 807–815.PubMedGoogle Scholar
  5. Drouin, J., Chamberland, M., Charon, J., Jeannotte, L. & Nemer, M., (1985).FEBS Lett.,193, 54–58.PubMedCrossRefGoogle Scholar
  6. Ferrini, M. & De Nicola, A.F. (1991)Life Sci.,48, 2593–2601.PubMedCrossRefGoogle Scholar
  7. Gagner, J.P. & Drouin, J. (1985)Mol. Cell. Endocrinol.,40, 25–32.PubMedCrossRefGoogle Scholar
  8. Gogan, F., Rotsztejn, W.H., Couturier, L., Chazal, G., Beattie, I.A. & Kordon, C. (1980)Brain Res.,184, 109–118.PubMedCrossRefGoogle Scholar
  9. Grino, M., Guillaume, V., Boudouresque, F., Conte-Devolx, B., Maltese, J.-Y. & Oliver, C. (1990)Mol. Endocrinol.,4, 1613–1619.PubMedGoogle Scholar
  10. Haas, D.A. & George, S.R. (1989)Brain Res. Bull.,23, 215–218.PubMedCrossRefGoogle Scholar
  11. Jingami, H., Mizuno, N., Takahashi, H., Shibahara, S., Furutani, Y., Imura, H. & Numa, S. (1985).FEBS Lett.,191, 63–66.PubMedCrossRefGoogle Scholar
  12. Kawano, H., Daikoku, H. & Shibasaki, T. (1988)J. Comp. Neurol.,272, 260–268.PubMedCrossRefGoogle Scholar
  13. Kitay, J.I. (1963)Endocrinology,73, 253–260.PubMedGoogle Scholar
  14. Köning, J.F.R. & Klippel, R.A. (1967). In:The rat brain. A. stereotaxic atlas. R.E. Krieger Publishing Co.: New York.Google Scholar
  15. Legand, S.J., Allyn-Coon, G. & Karsh, F.J. (1975)Endocrinology,96, 50–56.Google Scholar
  16. Le Mevel, J.C., Abitibol, S., Beraud, G. & Maniey, J. (1978).J. Endocrinol.,76, 359–360.PubMedGoogle Scholar
  17. Redei, A., Li, L., Halasz, I., McGivern, R.F. & Aird, F. (1994).Neuroendocrinology,60, 113–123.PubMedCrossRefGoogle Scholar
  18. Rhodes, C.H., Morrell, J.I. & Pfaff, D.W. (1981)Neuroendocrinology,33, 18–23.PubMedCrossRefGoogle Scholar
  19. Rivier, C. & Rivest, S. (1991)Biol. Reprod.,45, 523–532.PubMedCrossRefGoogle Scholar
  20. Robinson, B.G., Emanuel, R.L., Frim, D.M. & Majzoub, J.A. (1988).Proc. Natl. Acad. Sci. USA,85, 5244–5248.PubMedCrossRefGoogle Scholar
  21. Stefaneanu, L., Kovacs, K., Horvarth, E., Lloyd, R.V., Buchfelder, M., Fahlbusch, R. & Smyth, H. (1994).J. Clin. Endocrinol. Metab.,78, 83–88.PubMedCrossRefGoogle Scholar
  22. Swanson, L.W., Sawchenko, P.E., Rivier, J. & Vale, W.W. (1983).Neuroendocrinology,36, 165–186.PubMedCrossRefGoogle Scholar
  23. Vamvakopoulos, N.C. & Chrousos, G.P. (1993).J. Clin. Invest.,92, 1896–1902.PubMedCrossRefGoogle Scholar
  24. Viau, V. & Meaney, M.J. (1991).Endocrinology,129, 2503–2511.PubMedCrossRefGoogle Scholar
  25. Young III W.S., Mezey, E. & Siegel, R.E. (1986).Neurosci. Lett.,70, 198–204.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Michel Grino
    • 1
  • Micheline Héry
    • 1
  • Odile Paulmyer-Lacroix
    • 1
  • Geneviève Anglade
    • 1
  1. 1.Laboratoire de Neuroendocrinologie Expérimentale, INSERUM U 297Institut Jean Roche, UER NORDMarseille Cedex 20France

Personalised recommendations