Advertisement

Evidence for plasticity of the dopaminergic system in Parkinsonism

  • G. A. Donnan
  • D. G. Woodhouse
  • S. J. Kaczmarczyk
  • J. E. Holder
  • G. Paxinos
  • P. J. Chilco
  • A. J. Churchyard
  • R. M. Kalnins
  • G. C. A. Fabinyi
  • F. A. O. Mendelsohn
Applied Aspects of Synaptic Plasticity

Abstract

A series of compensatory mechanisms within the dopaminergic system have been shown to maintain clinical function in the presence of dopamine loss. Experimental evidence for increased presynaptic dopamine turnover owing to increased dopamine synthesis, release, and reduced reuptake exists. Direct evidence that these mechanisms maintain extracellular dopamine levels is provided by intracerebral microdialysis techniques. Postsynaptic denervation supersensitivity clearly occurs with D2 dopamine receptors, although this is less evident with D1 receptors.

Similarly, mechanisms of plasticity have been shown to be relevant in human postmortem and Positron Emission Tomographic studies of patients with Parkinson's disease. However, although presynaptic increases in dopamine turnover are well documented, postsynaptic D1 and D2 receptor changes have been more difficult to establish, mainly because of methodological difficulties. D2 but not D1, receptor increases have been documented in drug naive Parkinsonian patients with PET techniques. In transplantation of adrenal gland to striatum in animal models and patients with Parkinsonism where clinical improvement occurs, plasticity of host response may be as important as plasticity of the graft.

Although some elements of the compensatory mechanism of dopamine plasticity may be deleterious, such as dyskinesias owing to dopamine receptor supersensitivity, the overall effect of delay and minimization of the clinical expression of disease is advantageous. An even greater understanding of the mechanisms involved may assist in developing future therapeutic strategies.

Keywords

Dopamine Positron Emission Tomography Tyrosine Hydroxylase Dopamine Receptor MPTP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abercrombie E. D., Bonatz A. E., and Zigmond M. J. (1990) Effects ofl-dopa on extracellular dopamine in striatum of normal and 6-hydroxy-dopaminetreated rats.Brain Res. 525, 36–44PubMedCrossRefGoogle Scholar
  2. Agid Y., Javoy-Agid F., and Ruberg M. (1987) Biochemistry of neurotransmitters in Parkinson's disease.Movement Disorders 2. Marsden C. D. and Fahn S., eds., Butterworths, pp 166–230.Google Scholar
  3. Agid Y. (1991) Parkinson's disease: pathophysiology.The Lancet 337, 1321–1327.CrossRefGoogle Scholar
  4. Anderson P. H., Gingrich J. A., Bates M. D., Dearry A., Falardeau P., Senogles S. E., and Caron M. G. (1990)Trends in Pharmacology 11, 231–236.CrossRefGoogle Scholar
  5. Becker J. B. and Freed W. J. (1988) Adrenal medulla grafts enhance functional activity of the striatal dopamine system following substantia nigra lesions.Brain Res. 162, 401–406.CrossRefGoogle Scholar
  6. Bernheimer H., Birkmeyer W., Hornykiewiez O., Jellinger K., and Seitelberger F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington.J. Neurol. Sci. 20, 415–445.PubMedCrossRefGoogle Scholar
  7. Björklund A., Stenevi U., Dunnett S. B., and Iversen S. D. (1981) Functional reactivation of the deafferented neostriatum by nigral transplantsNature (Lond.) 289, 497–499.CrossRefGoogle Scholar
  8. Blottner D., Westermann R., Grothe C., Böhlen P., and Unsicker K. (1989) Basic fibroblast growth factor in the adrenal gland.Eur. J. Neurosci 1, 471–478.PubMedCrossRefGoogle Scholar
  9. Bohn M. C., Cupit L., Marciano F., and Gash D. M. (1987) Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers.Science 237, 913–916.PubMedCrossRefGoogle Scholar
  10. Bokobza B., Ruberg M., Scatton B., Javoy-Agid F., and Agid Y. (1984) [3H] spiperone binding, dopamine and HVA concentration in Parkinson's disease and supranuclear palsy.Eur. J. Pharmacol. 99, 167–175.PubMedCrossRefGoogle Scholar
  11. Buonamici M., Cassia C., Carpenteri L., Pegrassi L., and Di Chiara G. (1986) D1 receptor supersensitivity in the rat striatum after unilateral 6-hydroxy-dopamine lesions.Eur. J. Pharmacol. 126, 347–348.PubMedCrossRefGoogle Scholar
  12. Burns R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., and Kopin I. J. (1983) A primate model of Parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra byN-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Proc. Natl. Acad. Sci. USA 80, 4546–4550.PubMedCrossRefGoogle Scholar
  13. Calne D. B. and Zigmond M. J. (1991) Compensatory mechanisms in degenerative neurologic diseases.Arch. Neurol. 48, 361–363.PubMedGoogle Scholar
  14. Carlson J. H., Bergström D. A., and Walters J. K. (1987) Stimulation of both D-1 and D-2 dopamine receptors appears necessary for full expression of post-synaptic effects of dopamine agonists.Brain Res. 400, 205–218.PubMedCrossRefGoogle Scholar
  15. Cotzias G. C., Melvin H., Van Woert M. H., and Schiffer L. M. (1967) Aromatic amino acid and modification of Parkinsonism.N. Eng. J. Med. 276, 374–379.Google Scholar
  16. Creese I. and Synder S. H. (1979) Nigrostriatal lesions enhance striatal3H-apomorphine and3H-spiroperidol binding.Eur. J. Pharmacol. 56, 277–281.PubMedCrossRefGoogle Scholar
  17. Creese I., Burt D. R., and Snyder S. H. (1977) Dopamine receptor binding enhancement correlates with lesion-induced behavioural supersensitivity.Science 197, 596.PubMedCrossRefGoogle Scholar
  18. DeLong M. R. and Georgopoulos A. P. (1981) Motor functions of the basal ganglia.Handbook of Physiology, Section 1, The Nervous System. vol. 11. American Physiological Society, Bethesda, pp. 1017–1061.Google Scholar
  19. Donnan G. A., Kaczmarczyk S. J., Paxinos G., Chilco P.J., Kalnins R. M., Woodhouse D. G., and Mendelsohn F. A. O. (1991) Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiology.J. Comp. Neurol. 304, 419–434.PubMedCrossRefGoogle Scholar
  20. Drukarch B. and Stoof J. C. (1990) D-2 Dopamine autoreceptor selective drugs: Do they really exist?Life Sciences 47, 361–376.PubMedCrossRefGoogle Scholar
  21. Dubach M., Schmidt R., Kunkel D., Bowden D. M., Martin R., and German D. C. (1987) Primate neostriatal neurons containing tryrosine hydroxylase: immunohistochemical evidence.Neurosci. Lett. 75, 205–210.PubMedCrossRefGoogle Scholar
  22. Dunnett S. B., Björklund A., Stenevi U., and Iversen S. D. (1981) Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions.Brain Res. 215, 147–161.PubMedCrossRefGoogle Scholar
  23. Fiandaca M. S., Kordower J. H., Hansen J. T., Jiao S.-S., and Gash D. M. (1988) Adrenal medullary autografts into the basal ganglia of cebus monkeys: Injury-induced regeneration.Exp. Neurol. 102, 76–91.PubMedCrossRefGoogle Scholar
  24. Garnett E. S., Nahmias C., and Firnau G. (1984) Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography.Can. J. Neurol. Sci. 11, 174–179.PubMedGoogle Scholar
  25. Goetz C. G., Olanow W., Koller W. C., Penn R. D., Cahill D., Morantz R., Stebbins G., Tanner C. M., Klawans H. L., Shannon K. M., Comella C. L., Witt T., Cox C., Waxman M., and Gauger L. (1989) Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson's disease.N. Engl. J. Med. 320, 337–341.PubMedGoogle Scholar
  26. Grace A. A. and Bunney B. S. (1984) The control of firing pattern in nigral dopamine neurons: burst firing.J. Neurosci. 4, 2877–2890.PubMedGoogle Scholar
  27. Groves P. M. (1980) Synaptic endings and their post-synaptic targets in neostriatum: synaptic specializations revealed from analysis of serial sections.Proc. Natl. Acad. Sci. USA 77, 6926–6929.PubMedCrossRefGoogle Scholar
  28. Hallman H., Olson L., and Jonsson G. (1984) Neurotoxicity of the meperidine analogueN-methyl; 4-phenyl-1,2,3,6-Tetrahydropyridine on brain catecholamine neurons in the mouse.Eur. J. Pharmacol. 97, 133–136.PubMedCrossRefGoogle Scholar
  29. Hassan M. and Thankar J. (1988) Dopamine receptors in Parkinson's disease.Prog. Neuro-Psychopharmacol. Biol. Psychiatry 12, 173–182.CrossRefGoogle Scholar
  30. Hefti F., Haritikka J., and Schlumpf M. (1985) Implantation of PC12 cells into the corpus striatum of rats with lesions of the dopaminergic nigro-striatal neurons.Brain Res. 348, 283–288.PubMedCrossRefGoogle Scholar
  31. Heikkila R. E., Hess A., and Duvoisin R. C. (1984) Dopaminergic neurotoxicity of 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine in mice.Science 224, 1451–1453.PubMedCrossRefGoogle Scholar
  32. Hirsch E. C., Duyckaerts C., Javoy-Agid F., Hauw J.-J., and Agid Y. (1990) Does adrenal graft enhance recovery of dopaminergic neurons in Parkinson's disease?Ann. Neurol. 27, 676–682.PubMedCrossRefGoogle Scholar
  33. Horn A. S. (1990) Dopamine uptake: a review of progress in the last decade.Prog. Neurobiol. 34, 387–400.PubMedCrossRefGoogle Scholar
  34. Hurtig H., Joyce J., Sladek J. R., Trojanowski J. Q. (1989) Postmortem analysis of adrenal-medulla-to-caudate autograft in a patient with Parkinson's disease.Ann. Neurol. 25, 607–614.PubMedCrossRefGoogle Scholar
  35. Hyman C., Hofer M., Barde Y.-A., Juhasz M., Yancopoulos G. D., Squinto S. P., and Lindsay R. M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra.Nature 350, 230–232.PubMedCrossRefGoogle Scholar
  36. Javoy-Agid F., Ploska A., and Agid Y. (1981) Microtopography of tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyl-transferase in the substantia nigra and ventral tegmental area of control and Parkinsonian brains.J. Neurochem. 37, 1218–1227.PubMedCrossRefGoogle Scholar
  37. Javoy-Agid F., Hirsch C., Dumas S., Duyckaerts C., Mallet J., and Agid Y. (1990) Decreased tyrosine hydroxylase messenger RNA in the surviving dopamine neurons of the substantia nigra in Parkinson's disease: Anin situ hybridization study.Neuroscience 38, 245–253.PubMedCrossRefGoogle Scholar
  38. Kish S. J., Skannak K., and Hornykiewicz O. (1988) Uneven pattern of dopamine loss in the striatum of patients with Parkinson's disease.N. Eng. J. Med. 318, 876–880.Google Scholar
  39. Kordower J. H., Cochran E., Penn R. D., and Goetz C.G. (1991) Putative chromaffin cell survival and enhanced host-derived TH-fiber innervation following a functional adrenal medulla autograft for Parkinson's disease.Ann. Neurol. 29, 405–412.PubMedCrossRefGoogle Scholar
  40. Langston J. W., Ballard P., Tetrud J. W., and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidineanalog synthesis.Science 219, 979,980.PubMedCrossRefGoogle Scholar
  41. Leenders K. L., Palmer A. J., Quinn N., Clark J. C., Firnau G., Garnett E. S., Nahmias C., Jones T., and Marsden C. D. (1986) Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography.J. Neurol. Neurosurg. Psychiatry 49, 853–860.PubMedGoogle Scholar
  42. Lindvall O. (1991) Transplants in Parkinson's disease.Eur. Neurol. 31(suppl. 1), 17–27.PubMedCrossRefGoogle Scholar
  43. Lindvall O., Backlund E.-O., Farde L., Sedvall G., Freedman R., Hoffer B., Nobin A., Seiger A., and Olson L. (1987) Transplantation in Parkinson's disease: two cases of adrenal grafts to the putamen.Ann. Neurol. 22, 457–468.PubMedCrossRefGoogle Scholar
  44. Lipton S. A. and Kater S. B. (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival.TINS 12, 265–270.PubMedGoogle Scholar
  45. Madrazo I., Drucker-Colin R., Diaz V., Martines-Mata J., Torres C., and Becerril N. (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson's disease.N. Engl. J. Med. 316, 831–834.PubMedGoogle Scholar
  46. Maloteaux J.-M., Vanisberg M.-A., Laterre C., Javoy-Agid F., Agid Y., and Laduron P. M. (1988) [3H]GBR 12935 binding to dopamine uptake sites: subcellular localization and reduction in Parkinson's disease and progressive supranuclear palsy.Eur. J. Pharmacol. 156, 331–340.PubMedCrossRefGoogle Scholar
  47. Markey S. P., Johanssen J. N., Chiuech C. C., Burns R. S., and Herkenhan M. A. (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced Parkinsonism.Nature 311, 464–467.PubMedCrossRefGoogle Scholar
  48. Marsden C. D. (1982) The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture.Neurology 32, 514–539.PubMedGoogle Scholar
  49. McGeer P. L. and McGeer E. G. (1976) Enzyme associated with the metabolism of catecholamines, acetylocholine and GABA in human controls and patients with Parkinson's disease and Huntington's chorea.J. Neurochem. 26, 65–76.PubMedGoogle Scholar
  50. Meligeni J. A., Haycock J. W., Bennett W. F., and Waymire J. C. (1982) Phosphorylation and activation of tyrosine hydroxylase mediate the cAMP-induced increase in catecholamine biosynthesis in adrenal chromaffin cells.J. Biol. Chem. 257, 12,632–12,640.Google Scholar
  51. Meyers R. (1951) Surgical experiments in the therapy of certain ‘extrapyramidal’ diseases: a current evaluation.Acta. Psychiatr. Neurol. 67(suppl. 13), 12–42.Google Scholar
  52. Nahmias C., Garnett E. S., Firnau G., and Lang A. (1985) Striatal dopamine distribution in Parkinsonian patients during life.J. Neurol. Sci. 69, 223–230.PubMedCrossRefGoogle Scholar
  53. Needels D. L., Nieto-Sampedro M., and Cotman C. W. (1986) Induction of a neurite-promoting factor in rat brain following injury or deafferentiation.Neuroscience 18, 517–526.PubMedCrossRefGoogle Scholar
  54. Nieto-Sampedro M., Manthrope M., Barbin G., Varon S., and Cotman C. W. (1983) Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival of delayed implants in the wound cavity.J. Neurosci. 3, 2219–2229.PubMedGoogle Scholar
  55. Nisenbaum E. S., Stricker E. M., Zigmond M. J., and Berger T. W. (1986) Long-term effects of dopamine-depleting brain lesions on spontaneous activity of type II striatal neurons: relation to behavioural recovery.Brain Res. 398, 221–230.PubMedCrossRefGoogle Scholar
  56. Nishino H., Ono T., Shibata R., Kawamata S., Watanabe H., Shiosaka S., Tohyama M., and Karadi Z. (1987) Adrenal medullary cells transmute into dopaminergic neurons in dopamine-depleted rat caudate and ameliorate motor disturbances.Brain Res. 445, 325–337.CrossRefGoogle Scholar
  57. Ogawa M., Ishikawa T., and Ohta H. (1986) Transdifferentiation of endocrine chromaffin cells into neuronal cells.Corr. Top. Devel. Biol. 20, 99–110.CrossRefGoogle Scholar
  58. Orr W. B., Gardiner T. W., Stricker E. M., Zigmond M. J., and Berger T. W. (1986) Short-term effects of dopamine-depleting brain lesions on spontaneous activity of striatal neurons: relation to local dopamine concentration.Brain Res. 376, 20–28.PubMedCrossRefGoogle Scholar
  59. Parkinson Study Group (1989) DATATOP: a multicenter clinical trial in early Parkinson's disease.Arch. Neurol. 46, 1052–1060.Google Scholar
  60. Paterson I. A. and Hertz L. (1989) Sodium-independent transport of noradrenaline in mouse and rat astrocytes in primary culture.J. Neurosci. Res. 23, 71–77.PubMedCrossRefGoogle Scholar
  61. Pearce R. K. B., Seeman P., Jellinger K., and Tourtellotte W. W. (1990) Dopamine uptake sites and dopamine receptors in Parkinson's disease and schizophrenia.Eur. Neurol. 30(suppl. 1), 9–14.PubMedGoogle Scholar
  62. Perlow M. J., Kumakura K., and Guidotti A. (1980) Prolonged survival of bovine adrenal chromaffin cells in rat cerebral ventricles.Proc. Natl. Acad. Sci. USA 77, 5278–5281.PubMedCrossRefGoogle Scholar
  63. Pickel V. M., Beckley S. C., Joh T. H., et al. (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum.Brain Res. 225, 373–385.PubMedCrossRefGoogle Scholar
  64. Pierot L., Desnos C., Blin J., Raisman R., Scherman D., and Javoy-Agid F., Ruberg M., and Agid Y. (1988) D1 and D2-type dopamine receptors in patients with Parkinson's disease and progressive supranuclear palsy.J. Neurol. Sci. 86, 291–306.PubMedCrossRefGoogle Scholar
  65. Pimoule C., Schoemaker H., Javoy-Agid F., Scatton B., Agid Y., and Langer S. Z. (1983) Decrease in [3H]cocaine binding to the dopamine transporter in Parkinson's disease.Eur. J. Pharmacol. 95, 145,146.PubMedCrossRefGoogle Scholar
  66. Prochiantz A., Daguet M.-C., Herbet A., and Glowinski J. (1981) Specific stimulation of in vitro maturation of mesencephalic dopaminergic neurons by striatal membranes.Nature 293, 570–572.PubMedCrossRefGoogle Scholar
  67. Rausch W.-D., Hirata Y., Nagatsu T., Riederer P., and Jellinger K. (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson's disease: Effects of iron and phosphorylating agents.J. Neurochem. 50, 202–208.PubMedCrossRefGoogle Scholar
  68. Rinné J. O., Laihinen A., Någren K., Bergman J., and Solin O., Haaparanta M., and Ruotsalainen U., and Rinné U. K. (1990) PET demonstrates different behavior of striatal dopamine D-1 and D-2 receptors in early Parkinson's disease.J. Neurosci. Res. 27, 494–499.PubMedCrossRefGoogle Scholar
  69. Rinné U. K., Laihinen A., Rinné J. O., Någren K., Bergman J., and Ruotsalainen U. (1989) Positron emission tomography (PET) demonstrated dopamine D-2 receptor supersensitivity in the striatum of patients with early Parkinson's disease.Movement Disord. 5, 55–59.CrossRefGoogle Scholar
  70. Robertson G. S. and Robertson H. A. (1986) Synergistic effects of D-1 and D-2 dopamine agonists on turning behavior in rats.Brain Res. 384, 387–390.PubMedCrossRefGoogle Scholar
  71. Robinson G. S. and Whishaw I. Q. (1988) Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats.Brain Res. 450, 209–224.PubMedCrossRefGoogle Scholar
  72. Savasta M., Dubois A., Benavidès J., and Scatton B. (1988) Different plasticity changes in D1 and D2 receptors in rat striatal subregions following impairment of dopaminergic transmission.Neurosci. Letts. 85, 119–124.CrossRefGoogle Scholar
  73. Scatton B., Monfort J., Javoy-Agid F., and Agid Y., (1984) Neurochemistry of monoaminergic neurons in Parkinson's disease.Catecholamines: Neuropharmacology and Central Nervous Systems. Therapeutic Aspects. Liss, New York, pp. 43–52.Google Scholar
  74. Schultz W. (1982) Depletion of dopamine in the stiatum as an experimental model of Parkinsonism: direct effects and adaptive mechanisms.Progress in Neurobiology 18, 121–166.PubMedCrossRefGoogle Scholar
  75. Snyder G. L., Keller R. W. Jr., and Zigmond M. J. (1990) Dopamine effects from striatal slices after intercerebral 6-hydroxydopamine: evidence for compensatory hyperactivity of residual terminals.J. Pharmacol. Exp. Ther. 253, 867–876.PubMedGoogle Scholar
  76. Sokoloff P., Giros B., Martres M.-P., Bouthenet M.-L., and Schwartz J.-C. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics.Nature 347, 146–151.PubMedCrossRefGoogle Scholar
  77. Stachowiak M. K., Keller R. W. Jr., and Stricker E. M., and Zigmond M. J. (1987) Increased dopamine effux from striatal slices during development and after nigrostriatal bundle damage.J. Neurosci. 7, 1648–1654.PubMedGoogle Scholar
  78. Strömberg I., Herrera-Marschitz M., Hultgren L., Ungerstedt U., and Olson L. (1984) Adrenal medullary implants in the dopamine-denervated rat striatum. I. Acute catecholamine levels in grafts and host caudate as determined by HPLC-electrochem-stry and fluorescence histochemical image analysis.Brain Res. 297, 41–51.PubMedCrossRefGoogle Scholar
  79. Sunahara R. K., Guan H.-C., O'Dowd B. F., Seeman P., Laurier L. G., Ng G., George S. R., Torchia J., Van Tol H. H. M., and Niznik H. B. (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1.Nature 350, 614–619.PubMedCrossRefGoogle Scholar
  80. Tedroff J., Aquilonium S.-M., Hartvig P., Lundqvist H., Gee A. G., Uhlin J., and Langström B. (1988) Monoamine re-uptake sites in the human brain evaluated in vivo by means of11C-nomifensine and positron emission tomography: The effects of age and Parkinson's disease.Acta Neurol. Scand. 77, 192–201.PubMedGoogle Scholar
  81. Tedroff J., Aquilonium S.-M., Laihinen A., Rinn]'e U. K. Hartvig P., Andersson J., Lundqvist H., Haaparanta M., Solin O., Antoni G., Gee A. D., Uhlin J., and Langström B. (1990) Striatal kinetics of11C-(+)-nomifersine and 6-18F-fluoro-L-dopa in Parkinson's disease measured with positron emission tomography.Acta. Neurol. Scand. 81, 24–30.PubMedCrossRefGoogle Scholar
  82. Ungerstedt U. (1971) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system.Acta. Physiol. Scand. Suppl. 367, 69–93.PubMedGoogle Scholar
  83. Van Tol H. H. M., Bunzow J. R., Guan H.-C., Sunahara R. K., Seeman P., Niznik H. B., and Civelli O. (1991) cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine.Nature 350, 610–613.PubMedCrossRefGoogle Scholar
  84. Viola J. J., Pontieri F. E., Bankiewicz K. S., Kopin I. J., and Porrino L. J. (1989) Alterations in the distribution of dopamine D-1 and D-2 receptors in MPTP-induced hemiparkinsonian monkey.J. Cereb. Blood Flow Metab. 9, 106.Google Scholar
  85. Waddington J. L. (1986) Behavioural correlates of the action of selective D-1 dopamine receptor antagonists: Impact of SCH 23390 and SKF 83566, and functionally interactive D-1:D-2 receptor systems.Biochem. Pharmacol. 35, 3661–3667.PubMedCrossRefGoogle Scholar
  86. Zigmond M. J., Acheson A. L., Stachowiak M. K., and Strickerm E. M. (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical Parkinsonism.Arch. Neurol. 41, 856–861.PubMedGoogle Scholar
  87. Zigmond M. J., Abercrombie E. D., Berger T. W., Grace A. A., and Stricker E. M. (1990) Compensations after lesions of central dopaminergic neurones: some clinical and basic implications.Trends in Neurosciences 13, 290–296.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • G. A. Donnan
    • 1
  • D. G. Woodhouse
    • 2
  • S. J. Kaczmarczyk
    • 2
  • J. E. Holder
    • 2
  • G. Paxinos
    • 5
  • P. J. Chilco
    • 2
  • A. J. Churchyard
    • 1
  • R. M. Kalnins
    • 3
  • G. C. A. Fabinyi
    • 4
  • F. A. O. Mendelsohn
    • 2
  1. 1.Department of NeurologyAustin HospitalHeidelbergAustralia
  2. 2.Department of MedicineAustin HospitalHeidelbergAustralia
  3. 3.Department of Anatomical PathologyAustin HospitalHeidelbergAustralia
  4. 4.Department of NeurosurgeryAustin HospitalHeidelbergAustralia
  5. 5.School of PsychologyUniversity of New South WalesAustralia

Personalised recommendations