Skip to main content
Log in

Evidence for plasticity of the dopaminergic system in Parkinsonism

  • Applied Aspects of Synaptic Plasticity
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A series of compensatory mechanisms within the dopaminergic system have been shown to maintain clinical function in the presence of dopamine loss. Experimental evidence for increased presynaptic dopamine turnover owing to increased dopamine synthesis, release, and reduced reuptake exists. Direct evidence that these mechanisms maintain extracellular dopamine levels is provided by intracerebral microdialysis techniques. Postsynaptic denervation supersensitivity clearly occurs with D2 dopamine receptors, although this is less evident with D1 receptors.

Similarly, mechanisms of plasticity have been shown to be relevant in human postmortem and Positron Emission Tomographic studies of patients with Parkinson's disease. However, although presynaptic increases in dopamine turnover are well documented, postsynaptic D1 and D2 receptor changes have been more difficult to establish, mainly because of methodological difficulties. D2 but not D1, receptor increases have been documented in drug naive Parkinsonian patients with PET techniques. In transplantation of adrenal gland to striatum in animal models and patients with Parkinsonism where clinical improvement occurs, plasticity of host response may be as important as plasticity of the graft.

Although some elements of the compensatory mechanism of dopamine plasticity may be deleterious, such as dyskinesias owing to dopamine receptor supersensitivity, the overall effect of delay and minimization of the clinical expression of disease is advantageous. An even greater understanding of the mechanisms involved may assist in developing future therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie E. D., Bonatz A. E., and Zigmond M. J. (1990) Effects ofl-dopa on extracellular dopamine in striatum of normal and 6-hydroxy-dopaminetreated rats.Brain Res. 525, 36–44

    Article  PubMed  CAS  Google Scholar 

  • Agid Y., Javoy-Agid F., and Ruberg M. (1987) Biochemistry of neurotransmitters in Parkinson's disease.Movement Disorders 2. Marsden C. D. and Fahn S., eds., Butterworths, pp 166–230.

  • Agid Y. (1991) Parkinson's disease: pathophysiology.The Lancet 337, 1321–1327.

    Article  CAS  Google Scholar 

  • Anderson P. H., Gingrich J. A., Bates M. D., Dearry A., Falardeau P., Senogles S. E., and Caron M. G. (1990)Trends in Pharmacology 11, 231–236.

    Article  Google Scholar 

  • Becker J. B. and Freed W. J. (1988) Adrenal medulla grafts enhance functional activity of the striatal dopamine system following substantia nigra lesions.Brain Res. 162, 401–406.

    Article  Google Scholar 

  • Bernheimer H., Birkmeyer W., Hornykiewiez O., Jellinger K., and Seitelberger F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington.J. Neurol. Sci. 20, 415–445.

    Article  PubMed  CAS  Google Scholar 

  • Björklund A., Stenevi U., Dunnett S. B., and Iversen S. D. (1981) Functional reactivation of the deafferented neostriatum by nigral transplantsNature (Lond.) 289, 497–499.

    Article  Google Scholar 

  • Blottner D., Westermann R., Grothe C., Böhlen P., and Unsicker K. (1989) Basic fibroblast growth factor in the adrenal gland.Eur. J. Neurosci 1, 471–478.

    Article  PubMed  Google Scholar 

  • Bohn M. C., Cupit L., Marciano F., and Gash D. M. (1987) Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers.Science 237, 913–916.

    Article  PubMed  CAS  Google Scholar 

  • Bokobza B., Ruberg M., Scatton B., Javoy-Agid F., and Agid Y. (1984) [3H] spiperone binding, dopamine and HVA concentration in Parkinson's disease and supranuclear palsy.Eur. J. Pharmacol. 99, 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Buonamici M., Cassia C., Carpenteri L., Pegrassi L., and Di Chiara G. (1986) D1 receptor supersensitivity in the rat striatum after unilateral 6-hydroxy-dopamine lesions.Eur. J. Pharmacol. 126, 347–348.

    Article  PubMed  CAS  Google Scholar 

  • Burns R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., and Kopin I. J. (1983) A primate model of Parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra byN-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Proc. Natl. Acad. Sci. USA 80, 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  • Calne D. B. and Zigmond M. J. (1991) Compensatory mechanisms in degenerative neurologic diseases.Arch. Neurol. 48, 361–363.

    PubMed  CAS  Google Scholar 

  • Carlson J. H., Bergström D. A., and Walters J. K. (1987) Stimulation of both D-1 and D-2 dopamine receptors appears necessary for full expression of post-synaptic effects of dopamine agonists.Brain Res. 400, 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Cotzias G. C., Melvin H., Van Woert M. H., and Schiffer L. M. (1967) Aromatic amino acid and modification of Parkinsonism.N. Eng. J. Med. 276, 374–379.

    CAS  Google Scholar 

  • Creese I. and Synder S. H. (1979) Nigrostriatal lesions enhance striatal3H-apomorphine and3H-spiroperidol binding.Eur. J. Pharmacol. 56, 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Creese I., Burt D. R., and Snyder S. H. (1977) Dopamine receptor binding enhancement correlates with lesion-induced behavioural supersensitivity.Science 197, 596.

    Article  PubMed  CAS  Google Scholar 

  • DeLong M. R. and Georgopoulos A. P. (1981) Motor functions of the basal ganglia.Handbook of Physiology, Section 1, The Nervous System. vol. 11. American Physiological Society, Bethesda, pp. 1017–1061.

    Google Scholar 

  • Donnan G. A., Kaczmarczyk S. J., Paxinos G., Chilco P.J., Kalnins R. M., Woodhouse D. G., and Mendelsohn F. A. O. (1991) Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiology.J. Comp. Neurol. 304, 419–434.

    Article  PubMed  CAS  Google Scholar 

  • Drukarch B. and Stoof J. C. (1990) D-2 Dopamine autoreceptor selective drugs: Do they really exist?Life Sciences 47, 361–376.

    Article  PubMed  CAS  Google Scholar 

  • Dubach M., Schmidt R., Kunkel D., Bowden D. M., Martin R., and German D. C. (1987) Primate neostriatal neurons containing tryrosine hydroxylase: immunohistochemical evidence.Neurosci. Lett. 75, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett S. B., Björklund A., Stenevi U., and Iversen S. D. (1981) Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions.Brain Res. 215, 147–161.

    Article  PubMed  CAS  Google Scholar 

  • Fiandaca M. S., Kordower J. H., Hansen J. T., Jiao S.-S., and Gash D. M. (1988) Adrenal medullary autografts into the basal ganglia of cebus monkeys: Injury-induced regeneration.Exp. Neurol. 102, 76–91.

    Article  PubMed  CAS  Google Scholar 

  • Garnett E. S., Nahmias C., and Firnau G. (1984) Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography.Can. J. Neurol. Sci. 11, 174–179.

    PubMed  CAS  Google Scholar 

  • Goetz C. G., Olanow W., Koller W. C., Penn R. D., Cahill D., Morantz R., Stebbins G., Tanner C. M., Klawans H. L., Shannon K. M., Comella C. L., Witt T., Cox C., Waxman M., and Gauger L. (1989) Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson's disease.N. Engl. J. Med. 320, 337–341.

    PubMed  CAS  Google Scholar 

  • Grace A. A. and Bunney B. S. (1984) The control of firing pattern in nigral dopamine neurons: burst firing.J. Neurosci. 4, 2877–2890.

    PubMed  CAS  Google Scholar 

  • Groves P. M. (1980) Synaptic endings and their post-synaptic targets in neostriatum: synaptic specializations revealed from analysis of serial sections.Proc. Natl. Acad. Sci. USA 77, 6926–6929.

    Article  PubMed  CAS  Google Scholar 

  • Hallman H., Olson L., and Jonsson G. (1984) Neurotoxicity of the meperidine analogueN-methyl; 4-phenyl-1,2,3,6-Tetrahydropyridine on brain catecholamine neurons in the mouse.Eur. J. Pharmacol. 97, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Hassan M. and Thankar J. (1988) Dopamine receptors in Parkinson's disease.Prog. Neuro-Psychopharmacol. Biol. Psychiatry 12, 173–182.

    Article  CAS  Google Scholar 

  • Hefti F., Haritikka J., and Schlumpf M. (1985) Implantation of PC12 cells into the corpus striatum of rats with lesions of the dopaminergic nigro-striatal neurons.Brain Res. 348, 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila R. E., Hess A., and Duvoisin R. C. (1984) Dopaminergic neurotoxicity of 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine in mice.Science 224, 1451–1453.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E. C., Duyckaerts C., Javoy-Agid F., Hauw J.-J., and Agid Y. (1990) Does adrenal graft enhance recovery of dopaminergic neurons in Parkinson's disease?Ann. Neurol. 27, 676–682.

    Article  PubMed  CAS  Google Scholar 

  • Horn A. S. (1990) Dopamine uptake: a review of progress in the last decade.Prog. Neurobiol. 34, 387–400.

    Article  PubMed  CAS  Google Scholar 

  • Hurtig H., Joyce J., Sladek J. R., Trojanowski J. Q. (1989) Postmortem analysis of adrenal-medulla-to-caudate autograft in a patient with Parkinson's disease.Ann. Neurol. 25, 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Hyman C., Hofer M., Barde Y.-A., Juhasz M., Yancopoulos G. D., Squinto S. P., and Lindsay R. M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra.Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  • Javoy-Agid F., Ploska A., and Agid Y. (1981) Microtopography of tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyl-transferase in the substantia nigra and ventral tegmental area of control and Parkinsonian brains.J. Neurochem. 37, 1218–1227.

    Article  PubMed  CAS  Google Scholar 

  • Javoy-Agid F., Hirsch C., Dumas S., Duyckaerts C., Mallet J., and Agid Y. (1990) Decreased tyrosine hydroxylase messenger RNA in the surviving dopamine neurons of the substantia nigra in Parkinson's disease: Anin situ hybridization study.Neuroscience 38, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Kish S. J., Skannak K., and Hornykiewicz O. (1988) Uneven pattern of dopamine loss in the striatum of patients with Parkinson's disease.N. Eng. J. Med. 318, 876–880.

    CAS  Google Scholar 

  • Kordower J. H., Cochran E., Penn R. D., and Goetz C.G. (1991) Putative chromaffin cell survival and enhanced host-derived TH-fiber innervation following a functional adrenal medulla autograft for Parkinson's disease.Ann. Neurol. 29, 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Langston J. W., Ballard P., Tetrud J. W., and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidineanalog synthesis.Science 219, 979,980.

    Article  PubMed  CAS  Google Scholar 

  • Leenders K. L., Palmer A. J., Quinn N., Clark J. C., Firnau G., Garnett E. S., Nahmias C., Jones T., and Marsden C. D. (1986) Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography.J. Neurol. Neurosurg. Psychiatry 49, 853–860.

    PubMed  CAS  Google Scholar 

  • Lindvall O. (1991) Transplants in Parkinson's disease.Eur. Neurol. 31(suppl. 1), 17–27.

    Article  PubMed  Google Scholar 

  • Lindvall O., Backlund E.-O., Farde L., Sedvall G., Freedman R., Hoffer B., Nobin A., Seiger A., and Olson L. (1987) Transplantation in Parkinson's disease: two cases of adrenal grafts to the putamen.Ann. Neurol. 22, 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Lipton S. A. and Kater S. B. (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival.TINS 12, 265–270.

    PubMed  CAS  Google Scholar 

  • Madrazo I., Drucker-Colin R., Diaz V., Martines-Mata J., Torres C., and Becerril N. (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson's disease.N. Engl. J. Med. 316, 831–834.

    PubMed  CAS  Google Scholar 

  • Maloteaux J.-M., Vanisberg M.-A., Laterre C., Javoy-Agid F., Agid Y., and Laduron P. M. (1988) [3H]GBR 12935 binding to dopamine uptake sites: subcellular localization and reduction in Parkinson's disease and progressive supranuclear palsy.Eur. J. Pharmacol. 156, 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Markey S. P., Johanssen J. N., Chiuech C. C., Burns R. S., and Herkenhan M. A. (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced Parkinsonism.Nature 311, 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Marsden C. D. (1982) The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture.Neurology 32, 514–539.

    PubMed  CAS  Google Scholar 

  • McGeer P. L. and McGeer E. G. (1976) Enzyme associated with the metabolism of catecholamines, acetylocholine and GABA in human controls and patients with Parkinson's disease and Huntington's chorea.J. Neurochem. 26, 65–76.

    PubMed  CAS  Google Scholar 

  • Meligeni J. A., Haycock J. W., Bennett W. F., and Waymire J. C. (1982) Phosphorylation and activation of tyrosine hydroxylase mediate the cAMP-induced increase in catecholamine biosynthesis in adrenal chromaffin cells.J. Biol. Chem. 257, 12,632–12,640.

    CAS  Google Scholar 

  • Meyers R. (1951) Surgical experiments in the therapy of certain ‘extrapyramidal’ diseases: a current evaluation.Acta. Psychiatr. Neurol. 67(suppl. 13), 12–42.

    Google Scholar 

  • Nahmias C., Garnett E. S., Firnau G., and Lang A. (1985) Striatal dopamine distribution in Parkinsonian patients during life.J. Neurol. Sci. 69, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Needels D. L., Nieto-Sampedro M., and Cotman C. W. (1986) Induction of a neurite-promoting factor in rat brain following injury or deafferentiation.Neuroscience 18, 517–526.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M., Manthrope M., Barbin G., Varon S., and Cotman C. W. (1983) Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival of delayed implants in the wound cavity.J. Neurosci. 3, 2219–2229.

    PubMed  CAS  Google Scholar 

  • Nisenbaum E. S., Stricker E. M., Zigmond M. J., and Berger T. W. (1986) Long-term effects of dopamine-depleting brain lesions on spontaneous activity of type II striatal neurons: relation to behavioural recovery.Brain Res. 398, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Nishino H., Ono T., Shibata R., Kawamata S., Watanabe H., Shiosaka S., Tohyama M., and Karadi Z. (1987) Adrenal medullary cells transmute into dopaminergic neurons in dopamine-depleted rat caudate and ameliorate motor disturbances.Brain Res. 445, 325–337.

    Article  Google Scholar 

  • Ogawa M., Ishikawa T., and Ohta H. (1986) Transdifferentiation of endocrine chromaffin cells into neuronal cells.Corr. Top. Devel. Biol. 20, 99–110.

    Article  CAS  Google Scholar 

  • Orr W. B., Gardiner T. W., Stricker E. M., Zigmond M. J., and Berger T. W. (1986) Short-term effects of dopamine-depleting brain lesions on spontaneous activity of striatal neurons: relation to local dopamine concentration.Brain Res. 376, 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson Study Group (1989) DATATOP: a multicenter clinical trial in early Parkinson's disease.Arch. Neurol. 46, 1052–1060.

    Google Scholar 

  • Paterson I. A. and Hertz L. (1989) Sodium-independent transport of noradrenaline in mouse and rat astrocytes in primary culture.J. Neurosci. Res. 23, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Pearce R. K. B., Seeman P., Jellinger K., and Tourtellotte W. W. (1990) Dopamine uptake sites and dopamine receptors in Parkinson's disease and schizophrenia.Eur. Neurol. 30(suppl. 1), 9–14.

    PubMed  Google Scholar 

  • Perlow M. J., Kumakura K., and Guidotti A. (1980) Prolonged survival of bovine adrenal chromaffin cells in rat cerebral ventricles.Proc. Natl. Acad. Sci. USA 77, 5278–5281.

    Article  PubMed  CAS  Google Scholar 

  • Pickel V. M., Beckley S. C., Joh T. H., et al. (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum.Brain Res. 225, 373–385.

    Article  PubMed  CAS  Google Scholar 

  • Pierot L., Desnos C., Blin J., Raisman R., Scherman D., and Javoy-Agid F., Ruberg M., and Agid Y. (1988) D1 and D2-type dopamine receptors in patients with Parkinson's disease and progressive supranuclear palsy.J. Neurol. Sci. 86, 291–306.

    Article  PubMed  CAS  Google Scholar 

  • Pimoule C., Schoemaker H., Javoy-Agid F., Scatton B., Agid Y., and Langer S. Z. (1983) Decrease in [3H]cocaine binding to the dopamine transporter in Parkinson's disease.Eur. J. Pharmacol. 95, 145,146.

    Article  PubMed  CAS  Google Scholar 

  • Prochiantz A., Daguet M.-C., Herbet A., and Glowinski J. (1981) Specific stimulation of in vitro maturation of mesencephalic dopaminergic neurons by striatal membranes.Nature 293, 570–572.

    Article  PubMed  CAS  Google Scholar 

  • Rausch W.-D., Hirata Y., Nagatsu T., Riederer P., and Jellinger K. (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson's disease: Effects of iron and phosphorylating agents.J. Neurochem. 50, 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Rinné J. O., Laihinen A., Någren K., Bergman J., and Solin O., Haaparanta M., and Ruotsalainen U., and Rinné U. K. (1990) PET demonstrates different behavior of striatal dopamine D-1 and D-2 receptors in early Parkinson's disease.J. Neurosci. Res. 27, 494–499.

    Article  PubMed  Google Scholar 

  • Rinné U. K., Laihinen A., Rinné J. O., Någren K., Bergman J., and Ruotsalainen U. (1989) Positron emission tomography (PET) demonstrated dopamine D-2 receptor supersensitivity in the striatum of patients with early Parkinson's disease.Movement Disord. 5, 55–59.

    Article  Google Scholar 

  • Robertson G. S. and Robertson H. A. (1986) Synergistic effects of D-1 and D-2 dopamine agonists on turning behavior in rats.Brain Res. 384, 387–390.

    Article  PubMed  CAS  Google Scholar 

  • Robinson G. S. and Whishaw I. Q. (1988) Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats.Brain Res. 450, 209–224.

    Article  PubMed  CAS  Google Scholar 

  • Savasta M., Dubois A., Benavidès J., and Scatton B. (1988) Different plasticity changes in D1 and D2 receptors in rat striatal subregions following impairment of dopaminergic transmission.Neurosci. Letts. 85, 119–124.

    Article  CAS  Google Scholar 

  • Scatton B., Monfort J., Javoy-Agid F., and Agid Y., (1984) Neurochemistry of monoaminergic neurons in Parkinson's disease.Catecholamines: Neuropharmacology and Central Nervous Systems. Therapeutic Aspects. Liss, New York, pp. 43–52.

    Google Scholar 

  • Schultz W. (1982) Depletion of dopamine in the stiatum as an experimental model of Parkinsonism: direct effects and adaptive mechanisms.Progress in Neurobiology 18, 121–166.

    Article  PubMed  CAS  Google Scholar 

  • Snyder G. L., Keller R. W. Jr., and Zigmond M. J. (1990) Dopamine effects from striatal slices after intercerebral 6-hydroxydopamine: evidence for compensatory hyperactivity of residual terminals.J. Pharmacol. Exp. Ther. 253, 867–876.

    PubMed  CAS  Google Scholar 

  • Sokoloff P., Giros B., Martres M.-P., Bouthenet M.-L., and Schwartz J.-C. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics.Nature 347, 146–151.

    Article  PubMed  CAS  Google Scholar 

  • Stachowiak M. K., Keller R. W. Jr., and Stricker E. M., and Zigmond M. J. (1987) Increased dopamine effux from striatal slices during development and after nigrostriatal bundle damage.J. Neurosci. 7, 1648–1654.

    PubMed  CAS  Google Scholar 

  • Strömberg I., Herrera-Marschitz M., Hultgren L., Ungerstedt U., and Olson L. (1984) Adrenal medullary implants in the dopamine-denervated rat striatum. I. Acute catecholamine levels in grafts and host caudate as determined by HPLC-electrochem-stry and fluorescence histochemical image analysis.Brain Res. 297, 41–51.

    Article  PubMed  Google Scholar 

  • Sunahara R. K., Guan H.-C., O'Dowd B. F., Seeman P., Laurier L. G., Ng G., George S. R., Torchia J., Van Tol H. H. M., and Niznik H. B. (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1.Nature 350, 614–619.

    Article  PubMed  CAS  Google Scholar 

  • Tedroff J., Aquilonium S.-M., Hartvig P., Lundqvist H., Gee A. G., Uhlin J., and Langström B. (1988) Monoamine re-uptake sites in the human brain evaluated in vivo by means of11C-nomifensine and positron emission tomography: The effects of age and Parkinson's disease.Acta Neurol. Scand. 77, 192–201.

    PubMed  CAS  Google Scholar 

  • Tedroff J., Aquilonium S.-M., Laihinen A., Rinn]'e U. K. Hartvig P., Andersson J., Lundqvist H., Haaparanta M., Solin O., Antoni G., Gee A. D., Uhlin J., and Langström B. (1990) Striatal kinetics of11C-(+)-nomifersine and 6-18F-fluoro-L-dopa in Parkinson's disease measured with positron emission tomography.Acta. Neurol. Scand. 81, 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U. (1971) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system.Acta. Physiol. Scand. Suppl. 367, 69–93.

    PubMed  CAS  Google Scholar 

  • Van Tol H. H. M., Bunzow J. R., Guan H.-C., Sunahara R. K., Seeman P., Niznik H. B., and Civelli O. (1991) cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine.Nature 350, 610–613.

    Article  PubMed  Google Scholar 

  • Viola J. J., Pontieri F. E., Bankiewicz K. S., Kopin I. J., and Porrino L. J. (1989) Alterations in the distribution of dopamine D-1 and D-2 receptors in MPTP-induced hemiparkinsonian monkey.J. Cereb. Blood Flow Metab. 9, 106.

    Google Scholar 

  • Waddington J. L. (1986) Behavioural correlates of the action of selective D-1 dopamine receptor antagonists: Impact of SCH 23390 and SKF 83566, and functionally interactive D-1:D-2 receptor systems.Biochem. Pharmacol. 35, 3661–3667.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond M. J., Acheson A. L., Stachowiak M. K., and Strickerm E. M. (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical Parkinsonism.Arch. Neurol. 41, 856–861.

    PubMed  CAS  Google Scholar 

  • Zigmond M. J., Abercrombie E. D., Berger T. W., Grace A. A., and Stricker E. M. (1990) Compensations after lesions of central dopaminergic neurones: some clinical and basic implications.Trends in Neurosciences 13, 290–296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnan, G.A., Woodhouse, D.G., Kaczmarczyk, S.J. et al. Evidence for plasticity of the dopaminergic system in Parkinsonism. Mol Neurobiol 5, 421–433 (1991). https://doi.org/10.1007/BF02935563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935563

Keywords

Navigation