Skip to main content
Log in

Positive\(\partial \bar \partial - closed\) currents and non-Kähler geometrycurrents and non-Kähler geometry

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper some new results on positive\(\partial \bar \partial - closed\) currents are applied to modifications\(f:\bar M \to M\). The main result in this topic is that every smooth proper modification of a compact Kähler manifoldM is balanced. Moreover, under suitable hypotheses on the map, the Kähler degrees of\(\bar M\) corresponds to homological properties of the exceptional set of the modification. More examples ofp-Kähler manifolds are discussed in the last section of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessandrini, L., and Andrentia, M. Closed transverse (p, p)-forms on compact complex manifolds. Compositio Math.61, 181–200 (1987). Erratum ibid.63, 143 (1987).

    MATH  MathSciNet  Google Scholar 

  2. Alessandrini, L., and Bassanelli, G. Compactp-Kähler manifolds. Geometriac Dedicata38, 199–210 (1991).

    MATH  MathSciNet  Google Scholar 

  3. Alessandrini, L., and Bassanelli, G. A balanced proper modification ofP 3. Comment. Math. Helvetici66, 505–511 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  4. Barlet, D. Convexité de l'espace des cycles. Bull. Soc. Math. France106, 373–397 (1978).

    MATH  MathSciNet  Google Scholar 

  5. Bigolin, B. Gruppi di Aeppli. Ann. Sc. Norm. Sup.23, 259–287 (1969).

    MATH  MathSciNet  Google Scholar 

  6. Bigolin, B. Osservazioni sulla coomologia del\(\partial \bar \partial \). Ann. Sc. Norm. Sup.24, 571–583 (1970).

    MATH  MathSciNet  Google Scholar 

  7. Fujiki, A. Closedness of the Douady spaces of compact Kähler spaces. Publ. RIMS Kyoto14, 1–52 (1978).

    Article  MathSciNet  Google Scholar 

  8. Gauduchon, P. Fibrés hermitiens a endomorphisme de Ricci non négatif. Bull. Soc. Math. France105, 113–140 (1977).

    MATH  MathSciNet  Google Scholar 

  9. Grauert, H., and Remmert, R. Plurisubharmonische Funktionen in komplexen Räumen. Math. Z.65, 175–194 (1957).

    Article  MathSciNet  Google Scholar 

  10. Grauert, H., and Remmert, R. Coherent Analytic Sheaves. Berlin: Springer Verlag 1984.

    MATH  Google Scholar 

  11. Grauert, H., and Riemenschneider, O. Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen. Inv. Math.11, 263–292 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  12. Harvey, R. Removable singularities for positive currents. Am. J. Math.96, 67–78 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  13. Harvey, R. Holomorphic chains and their boundaries. Proc. Symp. Pure Math., Vol. 30, Part 1, pp. 309–382. Providence, RI: American Mathematical Society 1977.

    Google Scholar 

  14. Harvey, R., and Knapp, A. W. Positive (p, p)-forms, Wirtinger's inequality and currents. In: Proceedings Tulane Univ. Program on Value Distribution Theory in Complex Analysis and Related Topics in Differential Geometry 1972–73, pp. 43–62, New York: Marcel Dekker 1974.

    Google Scholar 

  15. Harvey, R., and Lawson, J. R. An intrinsec characterization of Kähler manifolds. Inv. Math.74, 169–198 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  16. Hironaka H. Flattening theorems in complex analytic geometry. Am. J. Math.97, 503–547 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  17. Hörmander, L. The Analysis of Linear Partial Differential Operators I. Grundlehren der mat. Wissenschaften 256. Berlin: Springer-Verlag 1983.

    MATH  Google Scholar 

  18. King, J. R. The currents defined by analytic varieties. Acta Math.127, 185–220 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  19. Lelong, P. Plurisubharmonic Functions and Positive Diffential Form. New York: Gordon and Breach 1969.

    Google Scholar 

  20. Michelson, M. L. On the existence of special metrics in complex geometry. Acta Math.143, 261–295 (1983).

    Google Scholar 

  21. Miyaoka, Y. Extension theorems for Kähler metrics. In: Proc. Japan Acad.50, 407–410 (1974).

  22. Sibony, N. Quelques problèmes de prolongement de courants en analyse complexe. Duke Math. J.52, 157–197 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  23. Siu, Y. T. Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Inv. Math.27, 53–156 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  24. Varouchas J. Propriétés cohomologiques d'une classe de variétés analitiques complexes compacies. Sem. d'Analyse Lelong-Dolbeault-Skoda 1983–84, Lecture Notes in Math. Vol. 1198, pp. 233–243, Berlin: Springer-Verlag 1985.

    Google Scholar 

  25. Varouchas, J. Sur l'image d'une variété Kähleriénne compacie. Seminalre Norguet 1983–84, Lecture Notes in Math., Vol. 1188, pp. 245–259. Berlin: Springer-Verlag 1985.

    Google Scholar 

  26. Varouchas, J. Kähler spaces and proper open morphisms. Math. Ann.283, 13–52 (1989).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is partially supported by MURST, 40%.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alessandrini, L., Bassanelli, G. Positive\(\partial \bar \partial - closed\) currents and non-Kähler geometrycurrents and non-Kähler geometry. J Geom Anal 2, 291–316 (1992). https://doi.org/10.1007/BF02934583

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02934583

Math Subject Classification

Key Words and Phrases

Navigation