Skip to main content
Log in

Processing and economic impacts of biomass delignification for ethanol production

  • Session 3 Bioprocessing Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The need for chemical pretreatment of biomass for the enzyme-catalyzed production of ethanol from lignocellulosic feedstocks has been established. Past research in the Alternative Fuels Division of the National Renewable Energy Laboratory has focused on dilute-acid prehydrolysis processes as a means of hydrolyzing the hemicellulose component of biomass. Such processes provide a solid residue that is more easily hydrolyzable by cellulase enzymes, as well as a hemicellulose-sugar component that can be converted by pentose-fermenting microorganisms.

This work investigates the technical and economic feasibility of including a separate biomass delignification/fractionation step, either in conjunction with dilute acid prehydrolysis or as an independent pretreatment process. These alternatives would not only solubilize the hemicellulose component of a biomass feedstock, but the lignin fraction as well. The resulting residual solids would be primarily composed of cellulose. The benefits found in converting such material to ethanol may include lower cellulase requirements, shorter bioconversion times, higher effective cellulose concentrations resulting in higher ethanol concentrations, smaller reactor volumes, and more efficient enzyme recycle options. A technoeconomic assessment indicates that improvements in these process parameters can lead to significant savings that can cover the costs of such process additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991),Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  2. Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992),Appl. Biochem. Biotechnol. 34/35, 639–649.

    Article  Google Scholar 

  3. Grethlein, H. E. (1980), US Patent No. 4,237,226.

  4. Brownell, H. H. and Saddler, J. N. (1984),Biotechnol. Bioeng. Symp. 14, 55–68.

    CAS  Google Scholar 

  5. Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N. (1985),J. Wood Chem. Technol. 3(5), 405–425.

    Article  Google Scholar 

  6. Schwald, W., Breuil, C., Brownell, H. H., Chan, M., and Saddler, J. N. (1989),Appl. Biochem. Biotech. 20/21, 29–44.

    Google Scholar 

  7. Dale, B. E. (1986), US Patent No. 4,600,590.

  8. Gharpuray, M. M., Fan, L. T., and Lee, Y. (1983),Wood and Agricultural Residues—Research on Use for Feed, Fuels, and Chemicals, Soltes, E. J., ed., Academic, New York, pp. 369–389.

    Google Scholar 

  9. Gould, J. M. (1987), US Patent No. 4,649,113.

  10. Tyson, G. J. (1991), US Patent No. 5,023,097.

  11. Chum, H. L., Johnson, D. K., Black, S., Grohmann, K., Sarkanen, K. V., Wallace, K., and Schroder, H. A. (1988),Biotechnol. Bioeng. 31, 643–649.

    Article  CAS  Google Scholar 

  12. Grohmann, K., Torget, R., and Himmel, M. (1985),Biotechnol. Bioeng. Symp. 15, 59–80.

    Google Scholar 

  13. Wright, J. D., Bergeron, P. W., and Werdene, P. J. (1987),Ind. Eng. Chem. Res. 26, 699–705.

    Article  CAS  Google Scholar 

  14. Holtzapple, M. T., Jun, J., Ahok, G., Patibandla, S. L., and Dale, B. E. (1991),Appl. Biochem. Biotech. 28/29, 59–74.

    Article  Google Scholar 

  15. Rivers, D. B. and Emert, G. H. (1988),Biotechnol. Bioeng. 31, 278–281.

    Article  CAS  Google Scholar 

  16. Schurz, J. (1986),Holzforschung 40, 225–232.

    Article  CAS  Google Scholar 

  17. Horton, G. L., Rivers, D. B., and Emert, G. H. (1980),Ind. Eng. Chem. Prod. Res. Dev. 19, 422–429.

    Article  CAS  Google Scholar 

  18. Inoi, T., Akabane, T., Saito, A., Kurokawa, Y., and Matsuoka, S. (1985),Hakkokogaku 63, 227–230.

    CAS  Google Scholar 

  19. Pekarovicova, A., Mikulasova, M., Cemakova, L., and Pekarovic, J. (1990),Pap. Celul. 45(6), 39–41.

    Google Scholar 

  20. Roy, S. K., Sadhukha, R., Raha, K., and Chakrabarty, S. L. (1991),Fuel 70(6), 757–760.

    Article  CAS  Google Scholar 

  21. Cho, N. S., Matsumoto, Y., and Chang, H. M. (1986),TAPPI Proceedings of 1986 Res. Dev. Conference, 99–102.

  22. Heitz, M., Capek-Menard, E., Koeberle, P. G., and Chomet, E. (1991),Bioresource Tech. 35, 23–32.

    Article  CAS  Google Scholar 

  23. Rivard, C. (1994, April 27), Personal communication. National Renewable Energy Laboratory, Golden, CO.

  24. Chemoglazov, V. M., Ermolova, O. V., and Klyosov, A. A. (1988),Enzyme Microb. Technol. 10, 503–507.

    Article  Google Scholar 

  25. Ooshima, H., Burns, D. S., and Converse, A. O. (1990),Biotechnol. Bioeng. 36, 446–452.

    Article  CAS  Google Scholar 

  26. Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990),Appl. Biochem. Biotechnol. 24/25, 115–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elander, R.T., Hsu, T. Processing and economic impacts of biomass delignification for ethanol production. Appl Biochem Biotechnol 51, 463–478 (1995). https://doi.org/10.1007/BF02933448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933448

Index Entries

Navigation