Comparative energetics of glucose and xylose metabolism in ethanologenic recombinantEscherichia coli B

  • Hugh G. Lawford
  • Joyce D. Rousseau
Session 2 Past, Present, and Emerging Concepts in Applied Biological Research


This study compared the anaerobic catabolism of glucose and xylose by a patented, recombinant ethanologenicEscherichia coli B 11303:pLOI297 in terms of overall yields of cell mass (growth), energy (ATP), and end product (ethanol). Batch cultivations were conducted with pH-controlled stirred-tank bioreactors using both a nutritionally rich, complex medium (Luria broth) and a defined salts minimal medium and growth-limiting concentrations of glucose or xylose. The value of YATP was determined to be 9.28 and 8.19 g dry wt cells/mol ATP in complex and minimal media, respectively. Assuming that the nongrowth-associated energy demand is similar for glucose and xylose, the mass-based growth yield (Y x/s , g dry wt cells/g sugar) should be proportional to the net energy yield from sugar metabolism. The value ofY x/s was reduced, on average, by about 50% (from 0.096 g/g glu to 0.051 g/g xyl) when xylose replaced glucose as the growth-limiting carbon and energy source. It was concluded that this observation is consistent with the theoretical difference in net energy (ATP) yield associated with anaerobic catabolism of glucose and xylose when differences in the mechanisms of energy-coupled transport of each sugar are taken into account. In a defined salts medium, the net ATP yield was determined to be 2.0 and 0.92 for glucose and xylose, respectively.

Index Entries

AIP yield xylose recombinantE. coli ethanol bioenergetics defined medium 


  1. 1.
    Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984),Biotech. Bioeng. Symp. 14, 139–157.Google Scholar
  2. 2.
    Timell, T. E. (1967),Wood Sci. and Technol. 1, 45–70.CrossRefGoogle Scholar
  3. 3.
    Bull, S. R. (1989), inEnergy from Biomass & Wastes XIV, D. L. Klass, ed., Institute of Gas Technology, Chicago, IL, pp. 1–14.Google Scholar
  4. 4.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.CrossRefGoogle Scholar
  5. 5.
    Tempest, D. W., and Neijssel, O. M. (1987), inEscherichia coli and Salmonella typhimurium, F. C. Neidhart, ed., Academic, New York, pp. 800–802.Google Scholar
  6. 6.
    Gottschalk, G. (1986), inBacterial Metabolism, 2nd ed. Springer-Verlag, New York, pp. 208–282.Google Scholar
  7. 7.
    Clark, D., and Rod, M. L. (1987),J. Mol. Evol. 25, 151–158.CrossRefGoogle Scholar
  8. 8.
    Brau, B., and Sahm, H. (1986),Arch. Microbiol. 144, 296–301.CrossRefGoogle Scholar
  9. 9.
    Neale, A. D., Scopes, R. K., and Kelly, J. M. (1988),Appl. Microbiol. Biotechnol. 29, 162–167.Google Scholar
  10. 10.
    Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987),Appl. Environ. Microbiol. 53, 2420–2425.Google Scholar
  11. 11.
    Ingram, L. O., Conway, T., and Alterthum, F. (1988), United States Patent 5,000,000.Google Scholar
  12. 12.
    Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990), inDevelopments in Industrial Microbiology, vol. 31, Elsevier, New York, pp. 21–30.Google Scholar
  13. 13.
    Alterthum, F., and Ingram, L. O. (1989),Appl. Environ. Microbiol. 54, 397–404.Google Scholar
  14. 14.
    Ingram, L. O. (1991), inEnergy from Biomass and Wastes XIV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 1105–1126.Google Scholar
  15. 15.
    Ohta, K., Alterhum, F., and Ingram, L. O. (1990),Appl. Environ. Microbiol. 56, 463–465.Google Scholar
  16. 16.
    Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.CrossRefGoogle Scholar
  17. 17.
    Ohta, K., Beall, D. S., Meija, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  18. 18.
    Lawford, H. G., and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.CrossRefGoogle Scholar
  19. 19.
    Lawford, H. G., and Rousseau, J. D. (1991),Biotechnol. Lett. 13, 191–196.CrossRefGoogle Scholar
  20. 20.
    Lawford, H. G., and Rousseau, J. D. (1992), inEnergy from Biomass and Wastes XV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp 583–622.Google Scholar
  21. 21.
    Lawford, H. G., and Rousseau, J. D. (1993), inEnergy from Biomass and Wastes XVI, Klass, D. L. ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.Google Scholar
  22. 22.
    Lawford, H. G., and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol. 39/40, 301–322.CrossRefGoogle Scholar
  23. 23.
    Bringer-Meyer, S., Schimz, K.-L., and Sahm, H. (1986),Arch. Microbiol. 146, 105–110.CrossRefGoogle Scholar
  24. 24.
    Diaz-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992),Biotechnol. Bioeng. 39, 59.CrossRefGoogle Scholar
  25. 25.
    Hill, P. W., Klapatch, T. R., and Lynd, L. R. (1993),Biotechnol. Bioeng. 42, 873–883.CrossRefGoogle Scholar
  26. 26.
    Thauer, R. K., Jungermann, K., and Decker, K. (1977),Bacteriol. Rev. 41, 100–180.Google Scholar
  27. 27.
    Stouthamer, A. H. (1979), inInternational Reviews of Biochemistry-Microbial Biochemistry, vol. 21, Quayle, J. R., ed., University Park Press, Baltimore, pp. 1–47.Google Scholar
  28. 28.
    Batley, E. H. (1987), inEnergetics of Microbial Growth, John Wiley, New York.Google Scholar
  29. 29.
    Pirt, J. S. (1975), inPrinciples of Microbe and Cell Cultivation, John Wiley, New York.Google Scholar
  30. 30.
    Gunsalus, I. C., and Shuster, C. W. (1961), inThe Bacteria, vol. 2, Academic, New York.Google Scholar
  31. 31.
    Neijssel, O. M., and Tempest, D. W. (1976),Arch. Microbiol. 110, 305–311.CrossRefGoogle Scholar
  32. 32.
    Bauchop, T., and Elsden, S. R. (1960),J. Gen. Microbiol. 23, 457–469.Google Scholar
  33. 33.
    Stouthamer, A. H. (1969), inMethods in Microbiology, vol. 1, Norris, J. R. and Ribbons, D. W., eds., Academic, New York, p. 629.CrossRefGoogle Scholar
  34. 34.
    Stouthamer, A. H. (1977), inMicrobial Energetics, 27th Symp. Soc. Gen. Microbiol., Haddock, B. A., and Hamilton, W. A., eds. Cambridge University Press, London, pp. 285–315.Google Scholar
  35. 35.
    Stouthamer, A. H. (1976), inYield Studies in Microorganisms, Meadowfield, Dewbury, UK.Google Scholar
  36. 36.
    Roseman, S. (1969),J. Gen. Physiol. 54, 138–184.CrossRefGoogle Scholar
  37. 37.
    Roseman, S., and Meadow, N. D. (1990),J. Biol. Chem. 265, 2993–2996.Google Scholar
  38. 38.
    Luria, S. E., and Delbruck, M. (1943),Genetics 28, 491–511.Google Scholar
  39. 39.
    Lawford, H. G., and Rousseau, J. D. (1993),Biotechnol. Lett. 14, 421–426.CrossRefGoogle Scholar
  40. 40.
    Lawford, H. G., and Rousseau, J. D. (1993),Biotechnol. Lett.,15, 615–620.CrossRefGoogle Scholar
  41. 41.
    Luria, S. E. (1960), inThe Bacteria, vol. 1, Gunsalus, I. C. and Stanier, I. Y., eds., Academic, New York, (chap. 1).Google Scholar
  42. 42.
    Forrest, W. W., and Walker, D. J. (1971),Adv. Microbiol. Physiol.,5, 213.CrossRefGoogle Scholar
  43. 43.
    Elsden, S. R., and Peel, J. L. (1958),Ann. Rev. Microbiol. 12, 145.CrossRefGoogle Scholar
  44. 44.
    Lam, V. M. S., Daruwalla, K., Henderson, P. D. F., and Jones-Mortimer, M. C. (1980),J. Bacteriol. 143, 396–402.Google Scholar
  45. 45.
    Abrams, A., and Smith, J. B. (1974), inThe Enzymes, 3rd ed., vol. 10, Boyer, P. D., ed., Academic, New York, pp. 395–429.Google Scholar
  46. 46.
    Nicholls, D. G. (1982), inBioenergetics, Academic, New York.Google Scholar
  47. 47.
    Mitchell, P. (1975),FEBS Lett. 43, 189–194.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Hugh G. Lawford
    • 1
  • Joyce D. Rousseau
    • 1
  1. 1.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations