Skip to main content
Log in

Comparative energetics of glucose and xylose metabolism in ethanologenic recombinantEscherichia coli B

  • Session 2 Past, Present, and Emerging Concepts in Applied Biological Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study compared the anaerobic catabolism of glucose and xylose by a patented, recombinant ethanologenicEscherichia coli B 11303:pLOI297 in terms of overall yields of cell mass (growth), energy (ATP), and end product (ethanol). Batch cultivations were conducted with pH-controlled stirred-tank bioreactors using both a nutritionally rich, complex medium (Luria broth) and a defined salts minimal medium and growth-limiting concentrations of glucose or xylose. The value of YATP was determined to be 9.28 and 8.19 g dry wt cells/mol ATP in complex and minimal media, respectively. Assuming that the nongrowth-associated energy demand is similar for glucose and xylose, the mass-based growth yield (Y x/s , g dry wt cells/g sugar) should be proportional to the net energy yield from sugar metabolism. The value ofY x/s was reduced, on average, by about 50% (from 0.096 g/g glu to 0.051 g/g xyl) when xylose replaced glucose as the growth-limiting carbon and energy source. It was concluded that this observation is consistent with the theoretical difference in net energy (ATP) yield associated with anaerobic catabolism of glucose and xylose when differences in the mechanisms of energy-coupled transport of each sugar are taken into account. In a defined salts medium, the net ATP yield was determined to be 2.0 and 0.92 for glucose and xylose, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984),Biotech. Bioeng. Symp. 14, 139–157.

    Google Scholar 

  2. Timell, T. E. (1967),Wood Sci. and Technol. 1, 45–70.

    Article  CAS  Google Scholar 

  3. Bull, S. R. (1989), inEnergy from Biomass & Wastes XIV, D. L. Klass, ed., Institute of Gas Technology, Chicago, IL, pp. 1–14.

    Google Scholar 

  4. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.

    Article  Google Scholar 

  5. Tempest, D. W., and Neijssel, O. M. (1987), inEscherichia coli and Salmonella typhimurium, F. C. Neidhart, ed., Academic, New York, pp. 800–802.

    Google Scholar 

  6. Gottschalk, G. (1986), inBacterial Metabolism, 2nd ed. Springer-Verlag, New York, pp. 208–282.

    Google Scholar 

  7. Clark, D., and Rod, M. L. (1987),J. Mol. Evol. 25, 151–158.

    Article  CAS  Google Scholar 

  8. Brau, B., and Sahm, H. (1986),Arch. Microbiol. 144, 296–301.

    Article  CAS  Google Scholar 

  9. Neale, A. D., Scopes, R. K., and Kelly, J. M. (1988),Appl. Microbiol. Biotechnol. 29, 162–167.

    CAS  Google Scholar 

  10. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987),Appl. Environ. Microbiol. 53, 2420–2425.

    CAS  Google Scholar 

  11. Ingram, L. O., Conway, T., and Alterthum, F. (1988), United States Patent 5,000,000.

  12. Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990), inDevelopments in Industrial Microbiology, vol. 31, Elsevier, New York, pp. 21–30.

    Google Scholar 

  13. Alterthum, F., and Ingram, L. O. (1989),Appl. Environ. Microbiol. 54, 397–404.

    Google Scholar 

  14. Ingram, L. O. (1991), inEnergy from Biomass and Wastes XIV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 1105–1126.

    Google Scholar 

  15. Ohta, K., Alterhum, F., and Ingram, L. O. (1990),Appl. Environ. Microbiol. 56, 463–465.

    CAS  Google Scholar 

  16. Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.

    Article  CAS  Google Scholar 

  17. Ohta, K., Beall, D. S., Meija, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  18. Lawford, H. G., and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.

    Article  Google Scholar 

  19. Lawford, H. G., and Rousseau, J. D. (1991),Biotechnol. Lett. 13, 191–196.

    Article  CAS  Google Scholar 

  20. Lawford, H. G., and Rousseau, J. D. (1992), inEnergy from Biomass and Wastes XV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp 583–622.

    Google Scholar 

  21. Lawford, H. G., and Rousseau, J. D. (1993), inEnergy from Biomass and Wastes XVI, Klass, D. L. ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.

    Google Scholar 

  22. Lawford, H. G., and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol. 39/40, 301–322.

    Article  Google Scholar 

  23. Bringer-Meyer, S., Schimz, K.-L., and Sahm, H. (1986),Arch. Microbiol. 146, 105–110.

    Article  CAS  Google Scholar 

  24. Diaz-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992),Biotechnol. Bioeng. 39, 59.

    Article  CAS  Google Scholar 

  25. Hill, P. W., Klapatch, T. R., and Lynd, L. R. (1993),Biotechnol. Bioeng. 42, 873–883.

    Article  CAS  Google Scholar 

  26. Thauer, R. K., Jungermann, K., and Decker, K. (1977),Bacteriol. Rev. 41, 100–180.

    CAS  Google Scholar 

  27. Stouthamer, A. H. (1979), inInternational Reviews of Biochemistry-Microbial Biochemistry, vol. 21, Quayle, J. R., ed., University Park Press, Baltimore, pp. 1–47.

    Google Scholar 

  28. Batley, E. H. (1987), inEnergetics of Microbial Growth, John Wiley, New York.

    Google Scholar 

  29. Pirt, J. S. (1975), inPrinciples of Microbe and Cell Cultivation, John Wiley, New York.

    Google Scholar 

  30. Gunsalus, I. C., and Shuster, C. W. (1961), inThe Bacteria, vol. 2, Academic, New York.

    Google Scholar 

  31. Neijssel, O. M., and Tempest, D. W. (1976),Arch. Microbiol. 110, 305–311.

    Article  CAS  Google Scholar 

  32. Bauchop, T., and Elsden, S. R. (1960),J. Gen. Microbiol. 23, 457–469.

    CAS  Google Scholar 

  33. Stouthamer, A. H. (1969), inMethods in Microbiology, vol. 1, Norris, J. R. and Ribbons, D. W., eds., Academic, New York, p. 629.

    Chapter  Google Scholar 

  34. Stouthamer, A. H. (1977), inMicrobial Energetics, 27th Symp. Soc. Gen. Microbiol., Haddock, B. A., and Hamilton, W. A., eds. Cambridge University Press, London, pp. 285–315.

    Google Scholar 

  35. Stouthamer, A. H. (1976), inYield Studies in Microorganisms, Meadowfield, Dewbury, UK.

    Google Scholar 

  36. Roseman, S. (1969),J. Gen. Physiol. 54, 138–184.

    Article  Google Scholar 

  37. Roseman, S., and Meadow, N. D. (1990),J. Biol. Chem. 265, 2993–2996.

    CAS  Google Scholar 

  38. Luria, S. E., and Delbruck, M. (1943),Genetics 28, 491–511.

    CAS  Google Scholar 

  39. Lawford, H. G., and Rousseau, J. D. (1993),Biotechnol. Lett. 14, 421–426.

    Article  Google Scholar 

  40. Lawford, H. G., and Rousseau, J. D. (1993),Biotechnol. Lett.,15, 615–620.

    Article  CAS  Google Scholar 

  41. Luria, S. E. (1960), inThe Bacteria, vol. 1, Gunsalus, I. C. and Stanier, I. Y., eds., Academic, New York, (chap. 1).

    Google Scholar 

  42. Forrest, W. W., and Walker, D. J. (1971),Adv. Microbiol. Physiol.,5, 213.

    Article  CAS  Google Scholar 

  43. Elsden, S. R., and Peel, J. L. (1958),Ann. Rev. Microbiol. 12, 145.

    Article  CAS  Google Scholar 

  44. Lam, V. M. S., Daruwalla, K., Henderson, P. D. F., and Jones-Mortimer, M. C. (1980),J. Bacteriol. 143, 396–402.

    CAS  Google Scholar 

  45. Abrams, A., and Smith, J. B. (1974), inThe Enzymes, 3rd ed., vol. 10, Boyer, P. D., ed., Academic, New York, pp. 395–429.

    Google Scholar 

  46. Nicholls, D. G. (1982), inBioenergetics, Academic, New York.

    Google Scholar 

  47. Mitchell, P. (1975),FEBS Lett. 43, 189–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Comparative energetics of glucose and xylose metabolism in ethanologenic recombinantEscherichia coli B. Appl Biochem Biotechnol 51, 179–195 (1995). https://doi.org/10.1007/BF02933423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933423

Index Entries

Navigation