Skip to main content
Log in

The method of comparison equations in the solution of linear second-order differential equations (generalized W.K.B. method)

  • Published:
Applied Scientific Research, Section B

Summary

Linear second-order differential equations with known solutions are classified according to the form of the ‘comparison function’ Γ(σ)=. =U −1(σ)d2 U(σ)/dσ2. It is shown that the solutionsu(x) of another such equation γ(x)=u −1(x)d2 u(x)/dx 2 may be expressed in terms of the known solutionsU(σ) by the relationu(x)=(dσ/dx)−1/2 U(σ) where σ(x) is given by the general fundamental equation\(\gamma (x) = \left( {\frac{{d\sigma }}{{dx}}} \right)^2 \Gamma (\sigma ) + \left( {\frac{{d\sigma }}{{dx}}} \right)^{ + ^1 /_2 } \frac{{d^2 }}{{dx_2 }}\left( {\frac{{d\sigma }}{{dx}}} \right)^{ - ^1 /_2 } \)

When the last (‘correction’) term in this equation can be neglected, σ(x) may be found directly; as particular cases, the ordinary W.K.B. solutions result when the comparison function chosen is Γ(σ)=1, and the Langer solutions when Γ(σ)=σ. Tables are provided of the four functions in terms of which the Langer solutions can most easily be expressed.

It is shown how the approximate solution of the general fundamental equation relating σ tox may be employed in a perturbation method which avoids the customary- and sometimes dubious—assumption that all perturbed functions may be expanded by straightforward Taylor series involving only integral powers of the perturbation parameter.

Finally, it is shown how the correction term in the general fundamental equation may be evaluated. Explicit expressions are obtained for the correction terms to the ordinary W.K.B. solutions and to the Langer solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Applied Mathematics Series (AMS), Dept. of Commerce, National Bureau of Standards, Washington D.C., U.S.A.

  2. British Association Mathematical Tables (BA no), Cambridge Univ. Press.

  3. British Association Reports (BA date).

  4. Conolly, B. W., Quart. J. Mech. Appl. Mach.3 (1950) 236.

    Article  MathSciNet  Google Scholar 

  5. Davis, H. T., Tables of the Higher Mathematical Functions, Vol I, Principia Press, Bloomington, Indiana, 1933.

    MATH  Google Scholar 

  6. Dinnik, A., Tafeln der Besselschen Funktionen von der gebrochen Ordnung, Allukrainische Akad. Wiss. Naturw-tech Kl. USSR, 1933.

  7. Fletcher, A., J. C. P. Miller, and L. Rosenhead, Index of Mathematical Tables, Scientific Computing Service, London, 1946.

    MATH  Google Scholar 

  8. Harvard University Computation Laboratory, Annals 18 & 19, Harvard Univ. Press, Cambridge, U.S.A., 1948-9.

    Google Scholar 

  9. Heuman, C., J. Math. Phys.20 (1941) 127.

    MATH  MathSciNet  Google Scholar 

  10. Jahnke, E., and F. Emde, Tables of Functions, Dover, N.Y., 1945.

    MATH  Google Scholar 

  11. Jeffreys, H., and B. Jeffreys, Methods of Mathematical Physics, 2nd ed., Cambridge Univ. Press, 1950.

  12. Kotani, M., et alia, Proc. Phys-Math. Soc. Japan,20, extra no 1, 1938;22, extra no., 1940.

  13. Langer, R. E., Trans. Amer. Math. Soc.37 (1935) 397; Phys. Rev.51 (1937) 669.

    Article  MATH  MathSciNet  Google Scholar 

  14. Legendre, A. M., Tables of the Complete and Incomplete Elliptic Integrals, ed. K. Pearson, Biometrika Office, London, 1934.

    Google Scholar 

  15. MacDonald, A. D., J. Math. Phys.28 (1949) 183; Research Lab. of Electronics, M.I.T. Tech. Rep. 130, 1949; Can. J. Res.A28, (1950) 175.

    MATH  MathSciNet  Google Scholar 

  16. Mursi, Z., Tables of Legendre Associated Functions, Fouad I University, Cairo, 1941.

    MATH  Google Scholar 

  17. Pearson, K., Tables of the Incomplete Gamma-Function, Cambridge Univ. Press, Re-issue 1951.

  18. Placzek, G., The FunctionsE n (x), MT-1, National Research Council of Canada, Division of Atomic Energy, 1946.

  19. Russell, J. B., J. Math. Phys.12 (1933) 291.

    MATH  Google Scholar 

  20. Sommerfeld, A., Atomic Structure and Spectral Lines, I, Methuen, 3rd ed. 1934.

  21. Watson, G. N., Proc. Roy. Soc.A94 (1918) 190; Theory of Bessel Functions Cambridge Univ. Press, 1922 (2nd ed. 1952).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dingle, R.B. The method of comparison equations in the solution of linear second-order differential equations (generalized W.K.B. method). Appl. Sci. Res. 5, 345–367 (1956). https://doi.org/10.1007/BF02933318

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933318

Keywords

Navigation