Folia Microbiologica

, Volume 37, Issue 3, pp 181–187 | Cite as

Transformation ofStreptomyces lincolnensis protoplasts with plasmid vectors

  • Z. Jandová
  • P. Tichý


A method for the preparation and regeneration of protoplasts ofStreptomyces lincolnensis is described. Mycelium in the early exponential phase appeared to be most suitable for this purpose and yielded up to 25 % regenerated intact cells. Transformation ofS. lincolnensis protoplasts was achieved using broad-host-range streptomycete plasmid vectors pIJ622, pMP66, pRS410 and pIJ943 constructed from replacons pIJ101, pSLG33 and SCP2. The efficiency of transformation was 3·103 transformants per μg plasmid DNA when (2–5)·107 recipient protoplasts were used. Interspecific transformations showed that there is no efficient restriction system inS. lincolnensis that would limit the transfer of genetic information fromS. lividans orE. coli.


Streptomyces Lincomycin Thiostrepton Early Exponential Phase Sporulation Agar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltz R.H., Matsushima P.: Protoplast fusion inStreptomyces. Conditions for efficient genetic recombination and cell regeneration.J.Gen.Microbiol. 127, 137–146 (1981).PubMedGoogle Scholar
  2. Bernan V., Filpula D., Herber W., Bibb M., Katz E.: The nucleotide sequence of the tyrosinase gene fromStreptomyces antibioticus and characterisation of product.Gene 37, 101–110 (1985).PubMedCrossRefGoogle Scholar
  3. Bibb M.J., Freeman R.F., Hopwood D.A.: Physical and genetical characterisation of a second sex factor, SCP2, forStreptomyces coelicolor A3(2).Mol.Gen.Genet. 154, 155–166 (1977).CrossRefGoogle Scholar
  4. Bibb M., Schottel J.L., Cohen S.N.: A DNA cloning system for interspecies gene transfer in antibiotic-producingStreptomyces.Nature 284, 526–531 (1980).PubMedCrossRefGoogle Scholar
  5. Brahme N.M., Gonzales J.E., Rolls J.P., Hessler E.J., Mizsak S., Hurley L.H.: Biosynthesis of lincomycin. I. Studies using stable isotopes on the biosynthesis of the propyl- and ethyl-l-hygric acid moieties of lincomycin A and B.J.Am.Chem.Soc. 106, 7873–7878 (1984).CrossRefGoogle Scholar
  6. Hoeksema H., Bannister B., Birkenmeyer R.D., Kagan F., Magerlein B.J., Mac-Kellar F.A., Schroeder W., Slomp G., Herr R.R.: Chemical studies on lincomycin. I. The structure of lincomycin.J.Am.Chem.Soc. 86, 4223–4224 (1964).CrossRefGoogle Scholar
  7. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H.:Genetic Manipulation of Streptomyces. A Laboratory Manual. John Innes Foundation, Norwich 1985.Google Scholar
  8. Huber M., Hintermann G., Lerch K.: Primary structure of tyrosinase fromStreptomyces glaucescens.Biochemistry 24, 6038–6044 (1985).PubMedCrossRefGoogle Scholar
  9. Huber M., Hütter R., Lerch K.: The promoter of theStreptomyces glaucescens mel operon.Nucl.Acids Res. 15, 8106 (1987).PubMedCrossRefGoogle Scholar
  10. Jandová Z., Tichý P.: Preparation of protoplasts and regeneration of intact cells ofStreptomyces cinnamonensis.Folia Microbiol. 35, 456–459 (1990).CrossRefGoogle Scholar
  11. Jenkins G., Zalacain M., Cundliffe E.: Inducible ribosomal RNA methylation inStreptomyces lividans, conferring resistance to lincomycin.J.Gen.Microbiol. 135, 3281–3288 (1989).PubMedGoogle Scholar
  12. Kieser T., Hopwood D.A., Wright H.M., Thompson C.J.: pIJ101, a multi-copy broad host-rangeStreptomyces plasmid: functional analysis and development of DNA cloning vectors.Mol.Gen.Genet. 185, 223–238 (1982).PubMedCrossRefGoogle Scholar
  13. Lampel J.S., Strohl E.R.: Transformation and transfection of anthracycline-producingStreptomyces.AppLEnvironMicrobiol.51, 126–131 (1986).Google Scholar
  14. Lydiate D.J., Malpartida F., Hopwood D.A.: TheStreptomyces plasmid SCP2: its functional analysis and development into useful cloning vector.Gene 35, 223–235 (1985).PubMedCrossRefGoogle Scholar
  15. MacNeil D.J.: A flexible boiling procedure for isolating plasmid DNA from gram-positive microorganisms.J.Microbiol.Meth. 5, 115–123 (1986).CrossRefGoogle Scholar
  16. MacNeil D.J., Klapko L.M.: Transformation ofStreptomyces avermitilis by plasmid DNA.J.Ind.Microbiol. 2, 209–218 (1987).CrossRefGoogle Scholar
  17. Mason D.J., Dietz A., De Boer C.: Lincomycin, a new antibitotic. III. Discovery and biological properties, pp., 554–559 in J.C. Sylvester (Ed.):Antimicrobial Agents and Chemotherapy, 1962. Am.Soc.MicrobioI., Ann Arbor (MI) 1963.Google Scholar
  18. Matsushima P., Baltz R.H.: Efficient plasmid transformation ofStreptomyces ambofaciens andStreptomyces fradiae protoplasts.J.Bacteriol. 136, 180–185 (1985).Google Scholar
  19. Ogata S., Koyama-Miyosh Y., Hayashida S.: Transfection and transformation systems for pock-forming and thiostrepton producingStreptomyces azureus.J.Fac.Agric.Kyushu Univ. 29, 179–188 (1985).Google Scholar
  20. Okanishi M., Suzuki K., Umezawa H.: Formation and reversion of streptomycete protoplasts: cultural conditions and morphological study.J.Gen.Microbiol. 80, 389–400 (1974).PubMedGoogle Scholar
  21. Petříček M., Smrčková I., Tichý P.: Transformation ofStreptomyces granaticolor with natural and recombinant plasmid vectors.Folia Microbiol. 30, 474–478 (1985).CrossRefGoogle Scholar
  22. Petříček M., Tichý P.:Streptomyces cloning vector derived fromStreptomyces lavendulae-grasserius mini-plasmid pSLG33.FEMS Microbiol.Lett. 61, 109–114 (1989).CrossRefGoogle Scholar
  23. Summers D.K., Sheratt D.J.: Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerisation and stability.Cell 35, 1097–1103 (1984).CrossRefGoogle Scholar
  24. Thompson C.J., Ward J.M., Hopwood D.A.: DNA cloning inStreptomyces: resistance genes from antibiotic-producing species.Nature 286, 525–527 (1980).PubMedCrossRefGoogle Scholar
  25. Thompson C.J., Ward J.M., Hopwood D.A.: Cloning of antibiotic resistance and nutritional genes in streptomycetes.J.Bacteriol. 151, 668–677 (1982).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1992

Authors and Affiliations

  • Z. Jandová
    • 1
  • P. Tichý
    • 1
  1. 1.Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations