Advertisement

Biotechnology and Bioprocess Engineering

, Volume 9, Issue 5, pp 339–344 | Cite as

Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose

  • Eun-Seong Seo
  • Jin-Ha Lee
  • Jae-Young Cho
  • Mi-Young Seo
  • Hee-Sun Lee
  • Seuk-Sang Chang
  • Hyung-Jong Lee
  • Jeong-Sik Choi
  • Doman Kim
Article

Abstract

A method for synthesizing branched fructo-oligosaccharides (BFOS) with a high concentration of sucrose (1–3 M) was developed using levansucrase prepared fromLeuconostoc mesenteroides B-1355C. The degree of polymerization of oligosaccharides synthesized according to the present method ranged from 2 to over 15. The synthesized BFOS were stable at a pH ranges of 2 to 4 under 120°C. The percentage of BFOS in the reaction digest was 95.7% (excluding monosaccharides; 4.3% was levan). BFOS reduced the insoluble glucan formation byStreptococcus sobrinus on the surfaces of glass vials or stainless steel wires in the presence of sucrose. They also reduced the growth and acid productions ofS. sobrinus. Oligosaccharides can be used as sweeteners for foods such as beverages requiring thermo-and acid-stable properties and as potential inhibitors of dental caries.

Keywords

levansucrase fructooligosaccharides inhibition insoluble glucan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Magali, R. S., R. M. Willemot, and P. Monsan (2000) Glucansucrase: Molecular engineering and oligosaccharide synthesis.J. Mol. Catalysis 16: 117–128.Google Scholar
  2. [2]
    Marsh, P. D. (1999)Oral Microbiology. 4th ed., pp. 58–81 Wright, Woburn, USA.Google Scholar
  3. [3]
    Lindgren, S. E. and W. J. Dobrogosz (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations.FEMS. Microbiol. Rev. 7: 149–163.Google Scholar
  4. [4]
    Chambert, R., M. C. Rain-Guion, and M. F. Petit-Glatron (1992) Readthrough of theBacillus subtilis stop codon produces an extended enzyme displaying a higher polymerase activity.Biochim. Biophys. Acta 1132: 145–153.Google Scholar
  5. [5]
    Song, D. D. and N. A. Jacques (1999) Purification and enzymic properties of the fructosyltransferase ofStreptococcus salivarius ATCC 25975.J. Biochem. 341: 285–291.CrossRefGoogle Scholar
  6. [6]
    Jang, E. K., K. H. Jang, I. Koh, I. H. Kim, S. H. Kim, S. A. Kang, C. H. Kim, S. D. Ha, and S. K. Rhee (2002) Molecular characterization of the levansucrase gene fromPseudomonas aurantiaca S-4380 and its expression inEscherichia coli.J. Microbiol. Biotechnol. 12: 603–609.Google Scholar
  7. [7]
    Geier, G. and K. Geider (1993) Characterization and influence on virulence of the levansucrase gene from the firelight pathogenErwinia amylovora.Physiol. Mol. Plant Pathol. 42: 387–404.CrossRefGoogle Scholar
  8. [8]
    Park, H. E., N. H. Park, M. J. Kim, T. H. Lee, H. G. Lee, J. Y. Yang, and J. H. Cha (2003) Enzymatic synthesis of fructosyl oligosaccharides by levansucrase fromMicrobacterium laevaniformans ATCC 15953.Enzyme Microb. Technol. 32: 820–827.Google Scholar
  9. [9]
    Kim, C. Y., J. H. Lee, B. H. Kim, S. K. Yoo, E. S. Seo, K. S. Cho, D. F. Day, and D. Kim (2002) Production of mannitol usingLeuconostoc mesenteroides NRRL B-1149.Biotechnol. Bioprocess Eng. 7: 234–236.CrossRefGoogle Scholar
  10. [10]
    Kim, D., J. F. Robyt, S. Y. Lee, J. H. Lee, and Y. M. Kim (2003) Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reation ofLeuconostoc mesenteroides B-512FMCM dextransucrase.Carbohydr. Res. 338: 1183–1189.CrossRefGoogle Scholar
  11. [11]
    Lee J. H., S. Y. Lee, G. O. Lee, E. S. Seo, S. S. Chang, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by a novel carbohydrate fromLipomyces starkeyi.Biotechnol. Bioprocess Eng. 8: 106–111.CrossRefGoogle Scholar
  12. [12]
    Heo, S. J., D. Kim, I. S. Lee, and P. S. Chang (1999) Development of mixed-culture fermentation process and charaterization for new oligosacchariedes and dextran usingLipomyces starkeyi andLeuconostoc mesenteroides.Kor. J. Appl. Microbiol. Biotechnol. 27: 304–310.Google Scholar
  13. [13]
    Ryu, S. J., D. Kim, H. J. Ryu, and D. F. Day (2000) Purification and partial characterization of a novel glucanhydrolase fromLipomyces starkeyi KSM 22 and its use for inhibition of insoluble glucan formation.Biosci. Biotechnol. Biochem. 64: 223–228.CrossRefGoogle Scholar
  14. [14]
    Tanzer, J. M., M. L. Freedman, and R. J. Fitzgerald (1985) Virulence of mutants defective in glucosyltransferase, dextran mediated aggregation, or dextranase activity. pp. 204–211. In: S. E. Mergenhagen and B. Rosan (eds.)Molecular Basis of Oral Microbial Adhesion. ASM, Washington, USA.Google Scholar
  15. [15]
    Hamada, S. and H. D. Slade (1980) Biology, immunology and cariogencity ofStreptococcus mutans.Microbiol. Rev. 44: 331–384.Google Scholar
  16. [16]
    Robyt, J. F. and P. J. Martin (1983) Mechanism of synthesis ofd-glucan byd-glucosyltransferase fromStreptococcus mutans 6715.Carbohydr. Res. 113: 301–315.CrossRefGoogle Scholar
  17. [17]
    Robyt, J. F. (1995) Mechanism in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose.Adv. Carbohydr. Chem. Biochem. 51: 133–168.CrossRefGoogle Scholar
  18. [18]
    Vacca-smith, A. M., A. R. Venkitaraman, and R. G. Quivey (1996) Interaction of Streptococcal glucosyltransferase with α-amylase and starch on the surface of salivacoated hydroxyapatite.Archs. Oral Biol. 41: 291–298.CrossRefGoogle Scholar
  19. [19]
    Tsuchiya, H. M., N. N. Hellman, H. J. Koepsell, J. Corman, S. S. Stringer, and R. W. Jackson (1955) Factor affecting molecular weight of enzymatically synthesized dextran.J. Am. Chem. Soc. 77: 2412–2419.CrossRefGoogle Scholar
  20. [20]
    Fu, D. T. and J. F. Robyt (1991) Maltodextrin acceptor reactions ofStreptococcus mutans 6715 glucosyltransferases.Carbohydr. Res. 217: 201–211.CrossRefGoogle Scholar
  21. [21]
    Imai, S., K. Takeuchi, K. Shibata, S. Yoshikawa, S. Kitahata, S. Okada, S. Araya, and T. Nisizawa (1984) Screening of sugars inhibitory against sucrose-dependent synthesis and adherence of insoluble glucan and acid production byStreptococcus mutans.J. Dent. Res. 63: 1292–1297.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2004

Authors and Affiliations

  • Eun-Seong Seo
    • 1
    • 2
  • Jin-Ha Lee
    • 1
    • 3
  • Jae-Young Cho
    • 1
    • 2
  • Mi-Young Seo
    • 1
  • Hee-Sun Lee
    • 1
    • 4
  • Seuk-Sang Chang
    • 7
  • Hyung-Jong Lee
    • 5
    • 8
  • Jeong-Sik Choi
    • 8
  • Doman Kim
    • 1
    • 6
    • 8
  1. 1.Laboratory of Functional Carbohydrate Enzyme and Microbial GenomicsChonnam National UniversityGwangjuKorea
  2. 2.Department of Material Chemical and Biochemical EngineeringChonam National UniversityGwangjuKorea
  3. 3.Engineering Research instituteChonnam National UniversityGwangjuKorea
  4. 4.Department of PhysicsChonnam National UniversityGwangjuKorea
  5. 5.Department of Molecular and BiotechnologyChonnam National UniversityGwangjuKorea
  6. 6.Shool of Biological Sciences and Technology and Research Institute for CatalysisChonnam National UniversityGwangjuKorea
  7. 7.Pohang Accelerator LaboratoryPohangKorea
  8. 8.Biology Research Center for industrial AcceleratorsDongshin UniversityJeonnamKorea

Personalised recommendations