Biotechnology and Bioprocess Engineering

, Volume 6, Issue 5, pp 341–346 | Cite as

Production of red pigments byMonascus purpureus in submerged culture

  • Bum-Kyu Lee
  • No-Hwan Park
  • Hai Yon Piao
  • Wook-Jin Chung


For the purpose of mass producingMonascus red pigments optimum medium composition and environmental conditions were investigated in submerged flask cultures. The optimum carbon and nitrogen sources were determined to be 30 g/L of glucose and 1.5 g/L of monosodium glutamate (MSG). Of the three metals examined, Fe2+ showed the stronges stimulatory effect on pigment production and some stimulatory effect was also found in Mn2+. Optimum pH and agitation speed were determined to be 6.5 and 700 rpm, respectively. Under the optimum culture conditions batch fermentation showed that the maximum biomass yield and specific productivity of red pigments were 0.20 g DCW/g glucose and, 32.5 OD500 g DCW−1 h−1, respectively.


Monascus purpureus red pigments submerged culture nutritional effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lauro, G. J. (1991) A primer on natural colors.Cereal Food World 36: 949–953.Google Scholar
  2. [2]
    Wong, H. C. and P. E. Koeheler (1983) Production of red water solubleMonascus pigments.J. Food Sci. 48: 1200–1203.CrossRefGoogle Scholar
  3. [3]
    Yoshimura, M., S. Yamanaka, K. Mitsugi, and Y. Hirose (1975) Production ofMonascus pigment in a submerged culture.Agr. Biol. Chem. 39: 1789–1795.Google Scholar
  4. [4]
    Ohshima, M., N. Shizaki, and Y. Tonooka (1985) Production of neuropurpuratin, purplish-red pigment, by pure culture ofStreptomyces propurpuratus.J. Ferment. Technol. 63: 79–83.Google Scholar
  5. [5]
    Trias, J., M. Vinas, J. Guinea, and J. G. Loren (1988) Induction of yellow pigmentation inSerratia marcescens.Appl. Environ. Microbiol. 54: 3138–3141.Google Scholar
  6. [6]
    Lin, C. E. (1973) Isolation and culture condition ofMonascus sp. for the production of gigment in submerged culture.J. Ferment. Technol. 51: 407–414.Google Scholar
  7. [7]
    Pastrana, L., P. C. Blanc, M. O. Santerre, O. Loret, and G. Goma (1995) Production of red pigments byMonascus ruber in synthetic media with a strictly controlled nitrogen source.Process Biochem. 30: 333–341.CrossRefGoogle Scholar
  8. [8]
    Wang, H. L. and C. W. Hesseltine (1979) Mold-modified foods. pp. 95–129. In: H. J. Peppler and J. Perlman (eds.).Microbial Technology. Academic Press, New York, USA.Google Scholar
  9. [9]
    Chen, M. H. and M. R. Johns (1993) Effect of pH and nitrogen source on pigment production byMonascus purpureus.Appl. Microb. Biotechnol. 40: 132–138.CrossRefGoogle Scholar
  10. [10]
    Chen, M. H. and M. R. Johns (1994) Effect of carbon source on ethanol and pigment production byMonascus purpureus.Enzyme. Microb. Technol. 16: 584–590.CrossRefGoogle Scholar
  11. [11]
    Juzlova, P., I. Martincova, and J. Lozinski (1994) Ethanol as substrate for pigment production by the fungusMonascus.Enzyme Microb. Technol. 16: 996–1001.CrossRefGoogle Scholar
  12. [12]
    Miller, G. L. (1959) Use of dinitosalicylic acid regent for determination of reducing sugar.Anal. Chem. 31: 426–428.CrossRefGoogle Scholar
  13. [13]
    Lin, T. F., K. B. Yakushijin, G. H. Chi, and A. L. Demain (1991) Formation of water-solubleMonascus red pigments by biological and semi-synthetic processes.J. Indust. Microbiol. 9: 173–179.CrossRefGoogle Scholar
  14. [14]
    De Deken, H. (1966) The Crabtree effect: A regulatory system in yeast.J. Gen. Microbiol. 44: 149–156.Google Scholar
  15. [15]
    Spepherd, D. (1977) The relationship between pigment production and sporulation inMonascus. pp. 102–118. In: J. Meyrath and J. D. Bulock (eds.).Biotechnolgy and Fungal Differentiation. Academic Press, London, UK.Google Scholar
  16. [16]
    Broder, C. U. and P. E. Koehler (1980) Pigment production byMonascus purpureous with regard to quality and quantity.J. Food. Sci. 45: 567–569.CrossRefGoogle Scholar
  17. [17]
    Carels, M. and D. Shepherd. (1977) The effect of different nitrogen sources on pigment production and sporulation ofMonascus species in submerged shaken culture.Can. J. Microbiol. 23: 1360–1372.CrossRefGoogle Scholar
  18. [18]
    Juzlova, P., L. Martinkova, and V. Kren (1996) Secondary metabolites of the fungusMonascus: A review.J. Indust. Microbiol. 16: 163–170.CrossRefGoogle Scholar
  19. [19]
    Bau, Y. S. and H. C. Wong (1979) Zinc effects on growth pigmentation and antibacterial activity ofMonascus purpureous.Physiol. Plant. 46: 63–67.CrossRefGoogle Scholar
  20. [20]
    Weinberg, E. D. (1989) Roles of micronutrients in secondary metabolism ofActinomycetes. pp. 239–261. In: Shapiro, S. (ed.).Regulation of Secondary Metabolism in Actinomycetes. CRC Press, Boca Raton, USA.Google Scholar
  21. [21]
    Takahashi, J., H. Hidaka, and K. Yamada (1965) Effect of mycelial forms on citric acid fermentation in submerged mold culture.Agr. Biol. Chem. 29: 331–336.Google Scholar
  22. [22]
    Su, Y. C. and J. H. Huang (1980) Fermentative production of anka-pigments (Monascus-pigments).Proc. Natl. Sci. Counc. ROC 4: 201–215.Google Scholar
  23. [23]
    Han, S. and R. E. Mudgen (1992) Effects of oxygen and carbon dioxide partial pressures onMonascus growth and pigment production in solid-state fermentations.Biotechnol. Prog. 8: 5–10.CrossRefGoogle Scholar
  24. [24]
    Turner, W. B. (1971).Fungal Metabolites. 2nd ed., pp. 136–139. Acddemic Press, London, UK.Google Scholar
  25. [25]
    Johns, M. R., R. Chong, and I. S. Maddox (1982) Hydrolysis of some natural and synthetic bile acid conjugates byCerospora melonis.Can. J. Microbiol. 28: 457–461.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2001

Authors and Affiliations

  • Bum-Kyu Lee
    • 1
  • No-Hwan Park
    • 1
  • Hai Yon Piao
    • 1
  • Wook-Jin Chung
    • 1
  1. 1.Research Institute for Clean Technology, Department of Environmental Engineering and BiotechnologyMyong-Ji UniversityYonginKorea

Personalised recommendations