Biotechnology and Bioprocess Engineering

, Volume 9, Issue 2, pp 69–75 | Cite as

Protein microarrays and their applications



In recent years, the importance of proteomic works, such as protein expression, detection and identification, has grown in the fields of proteomic and diagnostic research. This is because complete genome sequences of humans, and other organisms, progress as cellular processing and controlling are performed by proteins as well as DNA or RNA. However, conventional protein analyses are time-consuming; therefore, high throughput protein analysis methods, which allow fast, direct and quantitative detection, are needed. These are so-called protein microarrays or protein chips, which have been developed to fulfill the need for high-throughput protein analyses. Although protein arrays are still in their infancy, technical development in immobilizing proteins in their native conformation on arrays, and the development of more sensitive detection methods, will facilitate the rapid deployment of protein arrays as high-throughput protein assay tools in proteomics and diagnostics. This review summarizes the basic technologies that are needed in the fabrication of protein arrays and their recent applications.


protein microarray immunoassay diagnostics proteomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Schena, M., D. Shalon, R. W. Davis, and P. O. Brown (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray.Science 270: 467–470.CrossRefGoogle Scholar
  2. [2]
    Chee, M., R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart, M. S. Morris, and S. P. A. Fodor (1996) Accessing genetic information with highdensity DNA arrays.Science 274: 610–614.CrossRefGoogle Scholar
  3. [3]
    Stillman, B. A. and J. L. Tonkinson (2000) FASTTM slides: A novel surface for microarrays.Biotechniques 29: 630–633.Google Scholar
  4. [4]
    Kukar, T., S. Eckenrode, Y. R. Gu, W. Lian, M. Megginson, J. X. She, and D. H. Wu (2002) Protein microarrays to detect protein-protein interactions using red and green fluorescent proteinsAnal. Biochem. 306: 50–54.CrossRefGoogle Scholar
  5. [5]
    MacBeath, G. and S. L. Schreiber (2000) Printing Proteins as microarrays for high-throughput function determination.Science 289: 1760–1763.Google Scholar
  6. [6]
    Blaws, A. S. and W. M. Reichert (1998) Protein patterning.Biomaterials 19: 595–609.CrossRefGoogle Scholar
  7. [7]
    Nakanishi, K., H. Muguruma, and I. Karube (1996) A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-ploymerized films for immunosensors.Anal. Chem. 68: 1695–1700.CrossRefGoogle Scholar
  8. [8]
    Shriver-Lake, L. C., B. Donner, R. Edelstein, K. Breslin, S. K. Bhatia, and F. S. Ligler (1997) Antibody immobilization using heterobifunctional crosslinkers.Biosens. Bioelectron. 12: 1101–1106.CrossRefGoogle Scholar
  9. [9]
    Dontha, N., W. B. Nowall, and W. G. Kuhr (1997) Generationj of biotin/avidin/enzyme nanostructures with maskles photolithography.Anal. Chem. 69: 2619–2625.CrossRefGoogle Scholar
  10. [10]
    Pritchard, D. J., H. Morgan, and J. M. Cooper (1995) Patterning and regeneration of surfaces with antibodies.Anal. Chem. 67: 3605–3607.CrossRefGoogle Scholar
  11. [11]
    Gaber, B. P., B. D. Martin, and D. C. Turner (1999) Create a protein microarray using a hydrogel “stamper”.Chemtech. 29: 20–24.Google Scholar
  12. [12]
    Zhu, H., M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, M. Gerstein, and M. Snyder (2001) Global analysis of protein activities using proteome chips.Science 293: 2101–2105.CrossRefGoogle Scholar
  13. [13]
    Neubert, H., E. S. Jacoby, S. S. Bansal, R. K. Lies, D. A. Cowan, and A. T. Kicman (2002) Enhanced affinity capture MALDI-TOF MS: Orientation of an immunoglobulin G using recombinant protein G.Anal. Chem. 74: 3677–3683.CrossRefGoogle Scholar
  14. [14]
    Peluso, P., D. S. Wilson, D. Do, H. Tran, M. Venkatasubbajah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock (2003) Optimizing antibody immobilization strategies for the construction of protein arrays.Anal. Biochem. 312: 113–124.CrossRefGoogle Scholar
  15. [15]
    Konig, B. and M. Gratzel (1994) A novel immunosensor for herpes virus.Anal. Chem. 66: 341–344.CrossRefGoogle Scholar
  16. [16]
    Turkova, J. (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function.J. Chromatogr. B 722: 11–31.CrossRefGoogle Scholar
  17. [17]
    Anderson, G. P., M. A. Jacoby, F. S. Ligler, and K. D. King (1997) Effectiveness of protein A for antibody immobilization for a fiber optic biosensor.Biosens. Bioelectron. 12: 329–336.CrossRefGoogle Scholar
  18. [18]
    Babacan, S. P. Pivarnik, S. Letcher, and A. G. Rand (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor applicationBiosens. Bioelectron. 15: 615–621.CrossRefGoogle Scholar
  19. [19]
    Lu, B., M. R. Smyth, and R. O’Kennedy (1996) Oriented immobilization of antibodies and its applications in immunoassays and immunosensors.Analyst 121: 29R-32R.CrossRefGoogle Scholar
  20. [20]
    Turkova, J., L. Petkov, J. Sajdok, J. KaM, and J. Bene (1990) Carbohydrates as a tool for oriented immobilization of antigens and antibodies.J. Chromatogr. A 500: 585–593.CrossRefGoogle Scholar
  21. [21]
    Turkova, J., S. Vohnik, M. Helusova, J. Bene, and M. Ticha (1992) Galactosylation as a tool for the stabilization and immobilization of proteins.J. Chromatogr. A 597: 19–27.CrossRefGoogle Scholar
  22. [22]
    Heller, M. J. (2002) DNA microtechnology: Devices, systems, and applications.Annu. Rev. Biomed. Eng. 4: 129–153, 2002.CrossRefGoogle Scholar
  23. [23]
    Gracey, A. Y. and A. R. Cossins (2003) Application of microarray technology in environmental and comparative physiology.Annu. Rev. Physiol. 65: 231–259.CrossRefGoogle Scholar
  24. [24]
    Dhiman, N., R. Bonilla, D. O’Kane, and G. A. Poland (2001) Gene expression microarray: a 21st century tool for directed vaccine design.Vaccine 20: 22–30.CrossRefGoogle Scholar
  25. [25]
    Mooney, J. F., A. J. Hunt, J. R. McIntosh, C. A. Liberko, D. M. Walba, and C. T. Rogers (1996) Patterning of functional antibodies and other proteins by photolithography of silane monolayers.Proc. Natl. Acad. Sci. USA 93: 12287–12291.CrossRefGoogle Scholar
  26. [26]
    Mooney, J. F., C. T. Rogers, A. J. Hunter, and J. R. McIntosh (1996) A general technique for patterning of functional proteins with photolithography of silane monolayers.Biophys. J. 70: TU216-TU216.Google Scholar
  27. [27]
    Luo, Y. Q., J. G. Cai, I. Ginis, Y. Y. Sun, S. L. Lee, S. X. Yu, A. Hoke, and M. Rao (2003) Designing, testing, and validating a focused stem cell microarray for characterization of neutral stem cells and progenitor cells.Stem Cells 21: 575–587.CrossRefGoogle Scholar
  28. [28]
    Bernard, A., E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck (1998) Printing patterns of proteins.Langmuir 14: 2225–2229.CrossRefGoogle Scholar
  29. [29]
    Delamarche, E., M. Geissler M., A. Bernard, H. Wolf, B. Michel, J. Hilborn, and C. Donzel (2001) Hydrophilic poly (dimethylsiloxane) stamps for microcontact printing.Adv. mater. 13: 1164.CrossRefGoogle Scholar
  30. [30]
    Urbanowska, T., S. Mangialaio, C. Hartmann, and E. Legay (2003) Development of protein microarray technology to monitor biomarkers of rheumatoid arthritis diseaseCell Biol. Toxicol. 19: 189–202.CrossRefGoogle Scholar
  31. [31]
    Newman, J. D., A. F. P. Turner, and G. Marrazza (1992) Ink-jet printing for the fabrication of amerometric glucose biosensors.Anal. Chim. Acta 262: 13–17.CrossRefGoogle Scholar
  32. [32]
    Roda, A., M. Gardigli, C Russo, P. Pasini, and M. Baraldini (2000) Protein microdeposition using a conventional ink-jet printer.Biotechniques 28: 492–496.Google Scholar
  33. [33]
    Pardo, L., W. C. Wilson, and T. J. Boland (2003) Characterization of patterned self-assembled monolayers and protein arrays generated by the ink-jet method.Langmuir 19: 1462–1466.CrossRefGoogle Scholar
  34. [34]
    Watanabe, K., T. Miyazaki, and R. Matsuda (2003) Growth factor array fabrication using a color ink jet printer.Zool. Sci. 20: 429–434.CrossRefGoogle Scholar
  35. [35]
    Turcu, F., K. Tratsk-Nitz, S. Thanos, W. Schuhmann, and P. Hieduschka (2003) Ink-jet printing for micropattern generation of laminin for neuronal adhesion.J. Neurosci. Meth. 131: 141–148.CrossRefGoogle Scholar
  36. [36]
    Lee, B. H., J. W. Kim, K. Ishimoto, Y. Yamagata, A. Tanioka, and T. Nagamune (2003) Fabrication of protein microarrays for immunoassay using the electrospray deposition (ESD) method.J. Chem. Eng. Jap. 36: 1370–1375.CrossRefGoogle Scholar
  37. [37]
    Wiese, R. (2003) Analysis of several fluorescent detector molecules for protein microarray use.Luminescence 18: 25–30.CrossRefGoogle Scholar
  38. [38]
    Lundgren, J. S., A. N. Watkins, D. Racz, and F. S. Ligler (2000) A liquid crystal pixel array for signal discrimination in array biosensors.Biosens. Bioelectron. 15: 417–421.CrossRefGoogle Scholar
  39. [39]
    Pawlak, M., E. Grell, E. Schick, D. Anselmetti, and M. Ehrat (1998) Functional immobilization of biomemrane fragments on planar waveguides for the investigation of side-directed ligand binding by surface-confined fluorescence.Faraday Discuss. 111: 273–288.CrossRefGoogle Scholar
  40. [40]
    Rowe, C. A., L. M. Tender, M. J. Feldstein, J. P. Golden, S. B. Scruggs, B. D. MacCraith, J. J. Cras, and F. S. Ligler (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analyte.Anal. Chem. 71: 3846–3852.CrossRefGoogle Scholar
  41. [41]
    Rowe, C. A., S. B. Scruggs, M. J. Feldstein, J. P. Golden, and F. S. Ligler (1999) An array immunosensor for simultaneous detection of clinical analyte.Anal. Chem. 71: 433–439.CrossRefGoogle Scholar
  42. [42]
    Rowe, C. A., J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler (2000) Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor.Biosens. Bioelectron. 15: 579–589.CrossRefGoogle Scholar
  43. [43]
    Duveneck, G. L., M. Pawlak, and D. Neuschaefer (1997) Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides.Sens. Actuators B 38: 88–95.CrossRefGoogle Scholar
  44. [44]
    Weinberger, S. R., T. S. Morris, and M. Pawlak (2003) Recent trends in protein biochip technology.Pharmacogenomics 1: 395–416.CrossRefGoogle Scholar
  45. [45]
    Lizardi, P. M., X. H. Huang, Z. R. Zhu, P. Bray-Ward, D. C. Thomas, and D. C. Ward (1998) Mutation detection and single-molecule counting using isothermal rollingcircle amplification.Nat. Genet. 19: 225–232.CrossRefGoogle Scholar
  46. [46]
    Schweitzer, B., S. Wiltshire, J. Lambert, S. O’Malley, K. Kukanskis, Z. R. Zhu, S. F. Kingsmore, P. M. Lizardi, and D. C. Ward (2000) Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection.Proc. Natl. Acad. Sci. USA 97: 10113–10119.CrossRefGoogle Scholar
  47. [47]
    Schweitzer B., S. Roberts, B. Grimwade, W. P. Shao, M. J. Wang, Q. Fu, Q. P. Shu, I. Laroche, Z. M. Zhou, V. T. Tcherney, J. Chrstiansen, M. Velleca, and S. F. Kingsmore (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification.Nat. Biotechnol. 20: 359–365.CrossRefGoogle Scholar
  48. [48]
    Huang, R. P., R. C. Huang, Y. Fan, and Y. Lin (2001) Simultaneous detection of multiple cytokines from conditioned media a patient’s sera by an antibody-based protein array system.Anal. Biochem. 294: 55–62.CrossRefGoogle Scholar
  49. [49]
    Tu, C. Y., T. Kitamori, and T. Sawada (1993) Ultrasensitive heterogeneous immunoassay using photothermal deflection spectroscopy.Anal. Chem. 65: 3631–3635.CrossRefGoogle Scholar
  50. [50]
    Sato, K., M. Tokeshi, T. Odake, H. Kimura, T. Oosi, M. Nakao, and T. Kitamori (2000) Integration of an immunoabsorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip.Anal. Chem. 72: 1144–1147.CrossRefGoogle Scholar
  51. [51]
    Sato, K., M. Tokeshi, H. Kimura, and T. Kitamori (2001) Determination of carcinoembryonic antigen in human sera by intergrated bead-bed immunoassay in a microchip for cancer diagnosis.Anal. Chem. 73: 1213–1218.CrossRefGoogle Scholar
  52. [52]
    Kimura, H., K. Sekiguchi, T. Kitamori, T. Sawada, and M. Mukaida (2001) Assay of spherical cell surface molecules by thermal lens microscopy and its application to blood cell substances.Anal. Chem. 73: 4333–4337.CrossRefGoogle Scholar
  53. [53]
    Silzel, J. W., B. Cercek, C. Dodson, T. Tsay, and R. J. Obremski (1998) Mass-sensing, multianalyte microarray immunoassay with imaging detection.Clin. Chem. 44: 2036–2043.Google Scholar
  54. [54]
    Joos, T. O., M. Schrenk, P. Hopfl, K. Kroger, U. Chowdhury, D. Stoll, D. Schorner, M. Durr, K. Herick, S. Rupp, K. Sohn, and H. Hammerle (2000) A microarray enzymelinked immunosorbent assay for autoimmune diagnostics.Eletrophoresis 21 2641–2650.CrossRefGoogle Scholar
  55. [55]
    Harwanegg, C., S. Laffer, R. Hiller, M. W. Mueller, D. Kraft, S. Spitzauer, and R. Valenta (2003) Microarrayed recombinant allergens for diagnosis of allergy.Clin. Exp. Allergy 33: 7–13.CrossRefGoogle Scholar
  56. [56]
    Barbara, I., B. Eberlein-Konig, H. Behrendt, R. Niessner, J. Ring, and M. G. Weller (2003) Microarrays for the screening of allergen-specific IgE in human serum.Anal. Chem. 75: 556–562.CrossRefGoogle Scholar
  57. [57]
    Huang, R. P. (2001) Simultaneous detection of multiple proteins with an array-based enzyme-linked immunosorbent assay (ELISA) and enhanced chemiluminescence (ECL).Clin. Chem. Lab. Med. 39: 209–214.CrossRefGoogle Scholar
  58. [58]
    Wang, C. C., R. P. Huang, M. Sommer, H. Lioukov, R. C. Huang, Y. Lin, T. Miller, and J. Burke (2002) Array-based multiplexed screening and quantitation of human cytokines and chemokines.J. Proteome Res. 1: 337–343.CrossRefGoogle Scholar
  59. [59]
    Belov, L., O. de la Vega, C. G. dos Remedios, S. P. Mulligan, and R. I. Christopherson (2001) Immunophenotype of leukemias using a cluster of differentiation antibody microarray.Cancer Res. 61: 4483–4489.Google Scholar
  60. [60]
    Belov, L., P. Huang, N. Barber, S. P. Mulligan, and R. I. Christopherson (2003) Identification of repertoires of surface antigens on leukemias using an antibody microarray.Proteomics 3: 2147–2154.CrossRefGoogle Scholar
  61. [61]
    Miller, J. C., H. P. Zhou, J. Kwekel, R. Cavallo, J. Burke, E. B. Butler, B. S. The, and B. B. Haab (2003) Antibody microarray profiling of human prostate cancer sera: Antibody screening and identification of potential biomarkers.Proteomics 3: 56–63.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2004

Authors and Affiliations

  1. 1.Digital Bio TechnologyKyonggiKorea
  2. 2.Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations