Biotechnology and Bioprocess Engineering

, Volume 7, Issue 3, pp 121–129 | Cite as

Molecular breeding of genes, pathways and genomes by DNA shuffling



Existing methods for optimization of sequences by random mutagenesis generate libraries with a small number of mostly deleterious mutations, resulting in libraries containing a large fraction of non-functional clones that explore only a small part of squence space. Large numbers of clones need to be screened to find the rare mutants with improvements. Library display formats are useful to screen very large libraries but impose screening limitations that limit the value of this approach for most commercial applications. By contrast, in both classical breeding and in DNA shuffling, natural diversity is permutated by homologous recombination, generating libraries of very high quality, from which improved clones can be identified with a small number of complex screens. Given that this small number of screens can be performed under the conditions of actual use of the product, commercially relevant improvements can be reliably obtained.


molecular breeding DNA shuffling single gene shuffling family shuffling whole genome shuffling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Stemmer, W. P. C. (1995) Searching sequence space.Bio/Technology 13: 549–553.CrossRefGoogle Scholar
  2. [2]
    Stemmer, W. P. C. (1994) DNA shuffling by random fragmentation and reassembly:In vitro recombination for molecular evolution.Proc. Natl. Acad. Sci. USA 91: 10747–10751.CrossRefGoogle Scholar
  3. [3]
    Stemmer, W. P. C. (1994) Rapid evolution of a proteinin vitro by DNA shuffling.Nature 370: 389–391.CrossRefGoogle Scholar
  4. [4]
    Crameri, A., E. Whitehorn, E. Tate, and W. P. C. Stemmer (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling.Nature Biotechnol. 14: 315–319.CrossRefGoogle Scholar
  5. [5]
    Zhang, J., G. Dawes, and W. P. C. Stemmer (1997) Evolution of an effective fucosidase from a galactosidase by DNA shuffling and screening.Proc. Natl. Acad. Sci. USA 94: 4504–4509.CrossRefGoogle Scholar
  6. [6]
    Crameri, A., G. Dawes, E. Rodriguez, S. Silver, and W. P. C. Stemmer (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling.Nature Biotechnol. 15: 436–438.CrossRefGoogle Scholar
  7. [7]
    Crameri, A., S.-A. Raillard, E. Bermudez, and W. P. C. Stemmer (1998) DNA shuffling of genes from diverse species accelerates directed evolution.Nature 391: 288–291.CrossRefGoogle Scholar
  8. [8]
    Stemmer, W. P. C., A. Crameri, K. D. Ha, T. M. Brennan, and H. L. Heyneker (1995) Single-step PCR assembly of a gene and a whole plasmid from large numbers of oligonucleotides.Gene 164: 49–53.CrossRefGoogle Scholar
  9. [9]
    Christians, F. C., L. Scapozza, A. Crameri, G. Folkers, and W. P. C. Stemmer (1999) Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling.Nature Biotechnol. 17: 259–264.CrossRefGoogle Scholar
  10. [10]
    Ness, J., M. Welch, L. Giver, M. Bueno, J. Cherry, T. Borchert, W. P. C. Stemmer, and J. Minshull (1999) Creation of a functionally diverse enzyme library by DNA family shuffling.Nature Biotechnol. 17: 893–896.CrossRefGoogle Scholar
  11. [11]
    Chang, C.-C., T. T. Chen, B. W. Cox, G. N. Dawes, W. P. C. Stemmer, J. Punnonen, and P. A. Patten (1999) Rapid evolution of a cytokine using molecular breeding.Nature Biotechnol. 17: 793–797.CrossRefGoogle Scholar
  12. [12]
    Soong, N.-W., L. Nomura, K. Pekrun, M. Reed, L. Sheppard, G. Dawes, and W. P. C. Stemmer (2000) Mole-cular breeding of viruses.Nature Genetics 25: 436–439.CrossRefGoogle Scholar
  13. [13]
    Powell, S. K., M. A. Kaloss, A. Pinkstaff, R. McKee, I. Burimski, M. Pensiero, E. Otto, W. P. C. Stemmer, and N.-W. Soong (2000) Breeding of retroviruses by DNA shuffling for improved stability and processing yields.Nature Biotechnol. 18: 1279–1282.CrossRefGoogle Scholar
  14. [14]
    Stemmer, W. P. C. and N.-W. Soong (1999) Molecular breeding of viruses for targeting and other clinical properties.Tumor Targeting 4: 59–62.Google Scholar
  15. [15]
    Zhang, Y.-X., K. Perry, V. A. Vinci, K. Powell, W. P. C. Stemmer, and S. B. del Cardayre (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria.Nature 415: 644–646.CrossRefGoogle Scholar
  16. [16]
    Raillard, S., A. Krebber, Y. Chen, J. E. Ness, E. Bermudez, R. Trinidad, R. Fullem, C. Davis, M. Welch, J. Seffernick, L. P. Wackett, W. P. C. Stemmer, and J. Minshull (2001) Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes.Chemistry Biol. 125: 1–9.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2002

Authors and Affiliations

  1. 1.Maxygen, Inc.Redwood CityUSA

Personalised recommendations