Biotechnology and Bioprocess Engineering

, Volume 8, Issue 1, pp 19–22 | Cite as

Semicontinuous production of red pigment by immobilized cells ofBacillus sp. BH-99 using column bioreactor



The semicontinuous production of red pigment by immobilized cells ofBacillus sp. BH-99 was investigated in comparison with free cells. The red pigment produced highest productivity under the conditions of aeration of 0.2 mL/min and 2 mm diameter of gel beads by using 3.0% sodium alginate. Semicontinuous production by immobilized cells showed the highest productivity with replacement of fresh production medium in every 72 h for fourth fermentation cycle following the conditions of red pigment productivity.


red pigment immobilized cell colloidal chitin Bacillus sp. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Francis, F. J. (1997)Current Aspects of Food Colorants. pp. 19–27, IRC press, Ohio, USA.Google Scholar
  2. [2]
    Goldenberg, N. (1997)Why Additives the Safety of Foods. p. 26. British Nutrition Foundation, London, UK.Google Scholar
  3. [3]
    Hendry, G. A. F. and J. D. Houghton (1996)Natural Food Colorants. 2nd ed., pp. 73–76. Blackie Academic and Professional Co., NY, USA.Google Scholar
  4. [4]
    Gunatilaka, A. A. L. and S. R. Sirimanni (1979) Studies on medicinal and related factors in plants of Shri Lanka: Three new flavones fromG. fosbergii bud exudates.J. Chem. Res. Synop. 7: 216–224.Google Scholar
  5. [5]
    Francis, F. J. (1987) Lesser-known food colorants.Food Technol. 805–814.Google Scholar
  6. [6]
    Dees, C., S. Garrett, K. Gehrs, D. Henley, and C. M. Ardies (1997) Estrogenic and DNA-damaging activit of Red No.3 in human breast cancer cells.Environ. Health Perspetives 105: 625–632.CrossRefGoogle Scholar
  7. [7]
    Matsuano, T. (1989)Carotenoids Chemistry and Biology. pp. 59–74 Plenum Press, New York, USA.Google Scholar
  8. [8]
    Jackman, R. L., R. Y. Yada and M. A. Tung (1987) Separation and chemical properties of anthocyanins used for their quantitative analysis.J. Food Biochem. 11: 279–284.CrossRefGoogle Scholar
  9. [9]
    Morimoto, L., Kishi, T. and S. Ikegami (1965) Naphthoquinone derivatives fromLithospermum erythhrohizon Siebold et Zuccarint.Tetrahedron Lett. 52: 4739.Google Scholar
  10. [10]
    Masahiro, K. O., K. M. Mine, S. Taya, and T. Ichi (1994) Production and release of anthraquinone pigments by hairy roots of madderRubia tinctorum L. under improved culture conditions.J. Ferment. Boeng. 77: 103–106.CrossRefGoogle Scholar
  11. [11]
    Rhim, J. W., R. V. Numes, V. A. Jones, and K. R. Swartzel (1989) Kinetics of color changes of grape juice generates using linearly increasing temperature.J. Food Sci. 54: 776–777.CrossRefGoogle Scholar
  12. [12]
    Hanagata, N., A. Ito, Y. Fukuju, and J. Murata (1992) Red pigment formation in cultured cells ofCarthanus Tinctorius L.Biosci. Biotechnol. Biochem. 56: 44–47.CrossRefGoogle Scholar
  13. [13]
    Rosaetta, L. (1986) Food colors.Food Technol. 126: 49–56.Google Scholar
  14. [14]
    Nozaki, H., S. Date, H. Kondo, H. Kiyohara, D. Takaoka, T. Tada, and M. Nakayama (1991) Ankalactone, a new α, β-unsaturated γ-lactone fromMonascus anka.Agric. Biol. Chem., 53: 899–900.Google Scholar
  15. [15]
    Ryu, B. H., B. H. Lee, B. G. Park, D. S. Kim, and M. H. Roh (1989) Production of red pigment by using protoplast fusion ofMonascus anka.Kor. J. Food Sci. Technol. 21: 37–44.Google Scholar
  16. [16]
    Ryu, B. H., Y. E. Chi, B. G. Park, W. Y. Park, and D. G. Kim (1990) Isolation and identification ofStreptomyces californicus KS-89 which produced bluish purple pigment.Kor. J. Appl. Microbiol. Biotechnol. 18: 443–448.Google Scholar
  17. [17]
    Oshima, H., N. Ishizaki, A. Honda, and Y. Tonooka (1983) Cultural conditions for production of neopurpuratin, a purplish red pigment by mixed culture ofStreptomyces propurpuratins withBacillus sp.J. Ferment. Technol. 61: 31–40.Google Scholar
  18. [18]
    Oshima, H., N. Ishizaki, and Y. Tonooka (1985) Pro-duction of neopurpuratin, a purplish-red pigment by fermentation.J. Ferment. Technol. 63: 131–136.Google Scholar
  19. [19]
    Oshima, M., N. Ishizaki, A. Hando, Y. Tonooka, and N. Kanda (1981) Isolation and properties of neopurpuration, a purplish red pigment produced by mixed culture.J. Ferment. Technol. 59: 335–342.Google Scholar
  20. [20]
    Ryu, B. H. and M. J. Kim (2000) Production of red pigment from a marine bacterium utilizing colloidal chitin.Kor. J. Appl. Microbiol. Biotechnol. 28: 264–269.Google Scholar
  21. [21]
    White, F. H. and A. D. Portno (1985) Continuous fermentation by immobilized brewer's yeast.J. Inst. Brew. 84: 228–233.Google Scholar
  22. [22]
    Venkatasubramanian, K. and W. R. Vieth (1977)Immobilized Microbial Cells. p. 61. In: Bull M. J. (ed). Progress in industrial microbiology, Vol. 15. Elsevier, New York, USA.Google Scholar
  23. [23]
    Linco, P. and Y. Y. Linco (1984) Industrial applications of immobilized cells.CRC Crit. Rev. Biotechnol. 4: 289–296.Google Scholar
  24. [24]
    Hulst, A. C., J. Tranper, K. vant Riet, and J. M. M. Westbeek (1985) A new technique for the production of immobilized biocatalyets in large quantities.Biotechnol. Bioeng. 27: 870–878.CrossRefGoogle Scholar
  25. [25]
    Klein, J., J. Stock, and F. Wanger (1983) Immobilized whole cells. p. 142. In:Biotechnology. Verlay Chemie. Weinheim, Germany.Google Scholar
  26. [26]
    Klein, J., J. Stock, and K. D. Vorlop (1983) Pore size and properties of spherical Ca-alginate biocatalysts.Eur. J. Appl. Microbiol. Biotechnol. 18: 86–91.CrossRefGoogle Scholar
  27. [27]
    Eikmeir, H. and H. J. Rehm (1987) Stability of calcium alginate during citric acid production of immobilizedAspergillus niger.Appl. Microbiol. Biotechnol. 26: 105–112.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2003

Authors and Affiliations

  1. 1.Department of Food Science and BiotechnologyKyungsung UniversityBusanKorea

Personalised recommendations