Silicone rubber membrane bioreactors for bacterial cellulose production

  • Masayuki Onodera
  • Ikuro Harashima
  • Kiyoshi Toda
  • Tomoko Asakura


Cellulose production byAcetobacter pasteurianus was investigated in static culture using four bioreactors with silicone rubber membrane submerged in the medium. The shape of the membrane was flat sheet, flat sack, tube and cylindrical balloon. Production rate of cellulose as well as its yield on consumed glucose by the bacteria grown on the flat type membranes was approximately ten-fold greater than those on the non-flat ones in spite of the same membrane thickness. The membrane reactor using flat sacks of silicone rubber membrane as support of bacterial pellicle can supply greater ratio of surface to volume than a conventional liquid surface culture and is promising for industrial production of bacterial cellulose in large scale.


bacterial cellulose surface culture silicone rubber membrane Acetobacter pasteurianus 


  1. [1]
    Ross, P., P. Mayer, and M. Benziman (1991) Cellulose biosynthesis and function in bacteria.Microbiol. Rev. 55: 35–58.Google Scholar
  2. [2]
    Krieger J. (1990) Bacterial cellulose near commercialization.Chem. Eng. News May 21: 35–37.Google Scholar
  3. [3]
    Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, and M. Uryu (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose.J. Mater. Sci. 24: 3141–3145.CrossRefGoogle Scholar
  4. [4]
    Johnson D. C. and A. R. Winslow (1990) Bacterial cellulose has potential application as new paper coating.Pulp Paper May: 105–107.Google Scholar
  5. [5]
    Fontana, J. D., A. M. Souza, C. K. Fontana, I. L. Torriani, J. C. Moreschi, B. J. Gallotti, S. J. Souza, G. P. Narcisco, J. A. Bichara, and L. F. X. Farah (1990) Acetobacter cellulose pellicle as a temporary skin substitute.Appl. Biochem. Biotechnol. 24–25: 253–264.CrossRefGoogle Scholar
  6. [6]
    Takai, M., F. Nonomura, T. Inukai, M. Fujiwara, and J. Hayashi (1991) Filtration and permeation characteristics of bacterial cellulose composite.Sen'i Gakkaishi. 47: 119–129.Google Scholar
  7. [7]
    Watanabe, K., Y. Eto, S. Takano, S. Nakamori, H. Shibai, and S. Yoshinaka (1993) A new bacterial cellulose substrate for mammalian cell culture.Cytotechnol. 13: 107–114.CrossRefGoogle Scholar
  8. [8]
    Ammon, H. P. T., W. Ege, M. Oppenmann, W. Goepel, and S. Eisele (1995) Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin.Anal. Chem. 67: 66–471.CrossRefGoogle Scholar
  9. [9]
    Cannon, E. and S. M. Anderson (1991) Biogenesis of bacterial cellulose.Crit. Rev. Microbiol. 17: 435–447.CrossRefGoogle Scholar
  10. [10]
    Yoshinaga, F., N. Tonouchi, and K. Watanabe (1997) Research progress in production of bacterial cellulose by aeration agitation culture and its application as a new industrial material.Biosci. Biotech. Biochem. 61: 219–224.CrossRefGoogle Scholar
  11. [11]
    Kouda, T., Y. Hisato, and F. Yoshinaga (1997) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture.J. Ferment. Bioeng. 83: 371–376.CrossRefGoogle Scholar
  12. [12]
    Chao Y.-P, Y. Sugano, T. Kouda, F. Yoshinaga, and M. Shoda (1997) Production of bacterial cellulose byAcetobacter xylinum with an airlift reactor.Biotechnol. Tech. 11: 829–832.CrossRefGoogle Scholar
  13. [13]
    Yoshino T., T. Asakura, and K. Toda (1996) Cellulose production byAcetobacter pasteurianus on silicone membrane.J. Ferment. Bioeng. 81: 32–36.CrossRefGoogle Scholar
  14. [14]
    Toda K. and T. Asakura (1997) Cellulose production by acetic acid-resistantAcetobacter xylinum.J. Ferment. Bioeng. 84: 228–231.CrossRefGoogle Scholar
  15. [15]
    Toda K. and T. Asakura (1994) Acetic acid production byAcetobacter aceti in a silicone tube bioreactor.Biotechnol. Lett. 16: 617–620.CrossRefGoogle Scholar
  16. [16]
    Schramm, M. and S. Hestrin (1954) Synthesis of cellulose byAcetobacter xylinum: 1. Micromethod for the determination of cellulose.Biochem. J. 56: 163–166.Google Scholar
  17. [17]
    Ross, P., H. Weinhouse, Y. Aloni, D. Michaeli, P. Ohama, R. Mayer, S. Braun, E. de Vroom, G. A. van der Marel, J. H. van Boom, and M. Benzimann (1987) Regulation of cellulose synthesis inAcetobacter xylinum by cyclic diguanyllic acid.Nature 325: 279–281.CrossRefGoogle Scholar
  18. [18]
    Zaar, K. (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the Gramnegative bacteriumAcetobacter xylinum.J. Cell. Biol. 80: 773–777.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2002

Authors and Affiliations

  • Masayuki Onodera
    • 1
  • Ikuro Harashima
    • 1
  • Kiyoshi Toda
    • 1
  • Tomoko Asakura
    • 2
  1. 1.Department of Applied Chemistry and BiotechnologyNiigata Institute of TechnologyKashiwazakiJapan
  2. 2.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan

Personalised recommendations