Biotechnology and Bioprocess Engineering

, Volume 10, Issue 2, pp 103–108 | Cite as

Effect of liquid circulation velocity and cell density on the growth ofParietochloris incisa in flat plate photobioreactors

  • Wang Changhai
  • Sun Yingying
  • Xing Ronglian
  • Sun Liqin


For more accurately describing the durations of the light and the dark phases of microalgal cells over the whole light-dark cycle, and probing into the relationship between the liquid circulation time or velocity, the aeration rate and cell density, a series of experiments was carried out in 10 cm light-path flat plate photobioreactors. The results indicated that the liquid flow in the flat plate photobioreactor could be described by liquid dynamic equations, and a high biomass output, higher content and productivity of arachidonic acid, 70.10 gm−2d−1, 9.62% and 510.3 mg/L, respectively, were obtained under the optimal culture conditions.


liquid circulation velocity microalgae light-dark cycle Parietochloris incisa flat plate photobioreactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Richmond, A. (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. pp. 353–386. In: Cohen, Z. (ed.),Chemical from Microalgae. Taylor & Francis Ltd.Google Scholar
  2. [2]
    Molina Grima, E., J. A. Sanchen Perez, F. Garcia Camacho, J. M. Fernandez Sevilia, and F. G. Acien Fernandez (1997) Productivity analysis of outdoor chemostat culture in tubular air-lift photobioreactors.J. appl. Phycol. 8: 369–380.CrossRefGoogle Scholar
  3. [3]
    Richmond, A. and A. Vonshak (1978)Spirulina culture in Israel.Arch. Hydrobiol. Beih. Ergebn. Limnol. 11: 274–280.Google Scholar
  4. [4]
    Markl, H. (1980) Modeling of algal production systems. pp. 361–383. In: Shelef, G. and C. J. Soeder (eds)Algae Biomass. Elsevier/North-Holland Biomedical Press.Google Scholar
  5. [5]
    Erikson, L. E. and H. Y. Lee (1986) Process analysis and design of algal growth systems. pp. 197–206. In: Barclay W. and R. Meintosh (eds.).Algal Biomass Technologies. Nova Hedwigia.Google Scholar
  6. [6]
    Hu, Q. and A. Richmond (1996) Productivity and photosynthetic efficiency ofSpirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactors.J. Appl. Phycol. 8: 139–145.CrossRefGoogle Scholar
  7. [7]
    Grobbelaar, J. U., L. Nedbal, V. Tichy (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation.J. Appl. Phycol. 8: 335–343.CrossRefGoogle Scholar
  8. [8]
    Hu, Q., Y. Zarmi, and A. Richmond (1998) Combined effects of light intensity, light-path and culture density on output rate ofSpirulina platensis (Cyanobacteria).Eur. J. Phycol. 33: 165–171.CrossRefGoogle Scholar
  9. [9]
    Wang, C. H. (1998)Microalgae Culture in Photobioreactor. Ph. D. Thesis. State Key Laboratory of Biochemical Engineering, Chinese Academy of Science. China.Google Scholar
  10. [10]
    Wang, C. H. and F. Ouyang (2000) The cultures ofPorphyridium cruentum in photobioreactor.Engineering Chemistry Metallurgy (China) 21: 47–51.Google Scholar
  11. [11]
    Bosca, C., A. Dauta, and O. Marvalin (1991) Intensive outdoor algal cultures: How mixing enchces the photosynthetic production rate.Bioresour. Technol. 38: 185–188.CrossRefGoogle Scholar
  12. [12]
    Laws, E. A., K. L. Terry, J. Wickman, and M. S. Challup (1983) A simple algal production system designed to utilize the flashing light effect.Biotechnol. Bioeng. 25: 2319–1335.CrossRefGoogle Scholar
  13. [13]
    Richmond, A. and J. U. Grobbelaar (1986) Factors affecting the output rate ofSpirulina platensis with reference to mass cultivation.Biomass 10: 253–263.CrossRefGoogle Scholar
  14. [14]
    Hu, Q., H. Guterman, and A. Richmond (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs.Biotechnol. Bioeng. 51: 51–60.CrossRefGoogle Scholar
  15. [15]
    Kok, B. (1953) Experiments on photosynthesis byChlorella in flashing light. pp. 63–75. In: Burlew, J. S.. (ed.).Algal Culture: From Laboratory to Pilot Plant. Carnegie Institute of Washington, Washington Pub., USA.Google Scholar
  16. [16]
    Laws, E. R., K. L. Terry, J. Wickman, and M. S. Challup (1983) A simple algal production system designed to utilize the flashing light effect.Biotech. Bioeng. 25: 2319–2335.CrossRefGoogle Scholar
  17. [17]
    Lee, Y. K. and S. J. Pirt (1981) Energetic of photosynthetic algal growth: Influence of intermittent illumination in short (40s) cycles.J. Gen. Microbiology 124: 43–52.Google Scholar
  18. [18]
    Terry, K. L. (1986) Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate.Biotechnol. Bioeng. 28: 988–995.CrossRefGoogle Scholar
  19. [19]
    Wen, S. H. and C. H. Wang (2001) Study on the light decline model ofPorphyridium cruentum.Marine Science Bulletin 20: 35–39.Google Scholar
  20. [20]
    Wang, C. H. and F. Ouyang (1999) Effect of irradiance and temperature on the growth ofSpirulina platensis.Engineering Chemistry Metallurgy (China) 20: 371–375.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Wang Changhai
    • 1
    • 2
  • Sun Yingying
    • 2
  • Xing Ronglian
    • 2
  • Sun Liqin
    • 1
    • 2
  1. 1.Institute of Marine Biochemical EngineeringYantai UniversityYantaiChina
  2. 2.Marine Biochemical Engineering Lab.Dalian University of TechnologyDalianChina

Personalised recommendations