Advertisement

Optimization of staphylokinase production inBacillus subtilis using inducible and constitutive promoters

  • June-Hyung Kim
  • Sui-Lam Wong
  • Byung-Gee Kim
Article

Abstract

Staphylokinase (SAK) was produced inB. subtillis using two different promoter systems,i.e. the P43 andsacB promoters. To maximize SAK expression inB. subtilis, fermentation control strategies for each promoter were examined. SAK, under P43, a vegetative promoter transcribed mainly by σB containing RNA polymerase, was overexpressed at low dissolved oxygen (D.O.) levels, suggesting that thesigB operon is somewhat affected by the energy charge of the cells. The expression of SAK at the 10% D.O. level was three times higher than that at the 50% D.O. level. In the case ofsacB, a sucrose-inducible promoter, sucrose feeding was used to control the induction period and induction strength. Since sucrose is hydrolyzed by two sucrose hydrolyzing enzymes in the cell and culture broth, the control strategy was based on replenishing the loss of sucrose in the culture. With continuous feeding of sucrose, WB700 (pSAKBQ), which contains the SAK gene undersacB promoter, yieldedca. 35% more SAK than the batch culture. These results present efficient promoter-dependent control strategies inB. subtilis host system for foreign protein expression.

Keywords

staphylokinase B. subtilis P43 promoter sacB promoter 

References

  1. [1]
    Henner, D. J. (1990) Inducible expression of regulatory genes inBacillus subtilis.Meth. Enzymol. 185: 223–228.CrossRefGoogle Scholar
  2. [2]
    Bron, S., P. Bosma, M. Van Belkum, and E. Luxen (1987) Stability function inBacillus subtilis plasmid pTA1060.Plasmid 18: 8–15.CrossRefGoogle Scholar
  3. [3]
    Nagarajan, V., R. Ramaley, H. Albertson, and M. Cheu (1993) Secretion of streptividine fromBacillus subtilis.Appl. Environ. Microbiol. 59: 3894–3898.Google Scholar
  4. [4]
    Cotinen, V. P. and M. Sarvas (1993) TheprsA lipoprotein is essential for the protein secretion inB. subtilis and sets a limit for high level secretion.Mol. Microbiol. 8: 727–737.CrossRefGoogle Scholar
  5. [5]
    Wu, X. C., W. Lee, L. Tran, and S. L. Wong (1991) Engineering aB. subtilis expression-secretion system with a strain deficient in six expracellular protease.J. Bacteriol. 173: 4952–4958.Google Scholar
  6. [6]
    Lee, J. W. and S. J. Parulekar (1993) Enhanced production of α-amylase in the fed batch culture ofBacillus subtilis TN106 [pAT5].Biotechnol. Bioeng. 42: 1142–1150.CrossRefGoogle Scholar
  7. [7]
    Collen, D. and H. R. Lijnen (1994) Staphylokinase, a fibrin specific plasminogen activator with therapeutic potential.Blood 84: 680–686.Google Scholar
  8. [8]
    Collen, D. and F. van der Werf (1993) Coronary thrombolysis with recombinant staphylokinase in patients with evolving myocardial infarction.Circulation 87: 1850–1853.Google Scholar
  9. [9]
    Sako, T. (1985) Overproduction of staphylokinase inEscherichia coli.Eur. J. Biochem. 149: 557–563.CrossRefGoogle Scholar
  10. [10]
    Behnke, D. and D. Gerlach (1987) Cloning and expression inEscherichia coli, Bacillus subtilis, andStreptococcus sanguis of a gene for staphylokinase: A bacterial plasminogen activator.Mol. Gen. Genet. 210: 528–534.CrossRefGoogle Scholar
  11. [11]
    Schlott, B., M. Hartmann, K. H. Guhrs, E. Birch-Hirschfeid, H. D. Bohl, S. Vanderschueren, F. Van de Werf, A. Michoel, D. Collen, and D. Behnke (1994). High yield production and purification of recombinant staphylokinase for thrombolytic therapy.Bio/Technology 12: 185–189.CrossRefGoogle Scholar
  12. [12]
    Ye, R., J. H. Kim, B. G. Kim, S. Szarka, E. Sihota, and S. L. Wong (1999) High-level secretory production of intact, biologically active staphylokinase fromBacillus subtilis.Biotechnol. Bioeng. 62: 87–96.CrossRefGoogle Scholar
  13. [13]
    Goldfarb, D. S., R. H. Doi, and R. L. Rodriguez (1981) Expression of Tn9-derived chloramphenicol resistance inBacillus subtilis.Nature 293: 309–311.CrossRefGoogle Scholar
  14. [14]
    Wang, P. Z. and R. H. Doi (1984) Overlapping promoters transcribed byBacillus subtilis σ55 and σ37 RNA polymerase holoenzyme during growth and stationary phases.J. Biol. Chem. 259: 8619–8625.Google Scholar
  15. [15]
    Voelker, U., S. Engelmann, B. Maul, S. Riethdorf, A. Voelker, R. Schmid, H. Mach, and M. Hacker (1994) Analysis of the induction of general stress protein ofBacillus subtilis.Microbiology 140: 741–752.CrossRefGoogle Scholar
  16. [16]
    Benson, A. K. and W. G. Haldenwong (1993)Bacillus subtilis σB is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase.Proc. Natl. Acad. Sci. USA 90: 2330–2334.CrossRefGoogle Scholar
  17. [17]
    Duncan, L. and R. Losick (1993) SpolIAB is an anti-sigma factor protein that binds to and inhibit transcription by regulatory protein δF fromBacillus subtilis.Proc. Natl. Acad. Sci. USA 90: 2325–2329.CrossRefGoogle Scholar
  18. [18]
    Ohnishi, K., K. Kutsuckake, H. Suzuki, and T. Lino (1992) A novel transcriptional regulational mechanism in the flagella regulon ofSalmonella typhimurium: An antisigma factor inhibit the activity of the flagellum-specific sigma factor, σF.Mol. Microbiol. 6: 3149–3157.CrossRefGoogle Scholar
  19. [19]
    Rather, P. N., R. Coppolecchia, H. de Grazia, and C. P. Moran Jr. (1990) Negative regulator of σG-controlled gene expression in stationary-phaseBacillus subtilis.J. Bacteriol. 172: 709–715.Google Scholar
  20. [20]
    Suphantharika, M., A. P. Ison, M. D. Lilly, and B. C. Buckland (1994) The influence of dissolved oxygen tension on the synthesis of the antibiotic difficidin byBacillus subtilis.Biotechnol. Bioeng. 44: 1007–1012.CrossRefGoogle Scholar
  21. [21]
    Jaspe, A., P. Palacios, L. Fernandez, and C. Sanjose (2000) Effect of extra aeratioin on exrtracellular enzyme activities and ATP concentration of dairyPseudomonas fluorrescens.Lett. Appl. Microbiol. 30: 244–248.CrossRefGoogle Scholar
  22. [22]
    Hsieh, L. S., R. M. Burger, and K. Drilica (1991) Bacterial DNA supercoiling and [ATP]/[ADP] changes associated with a transition to anaerobic growth.J. Mol. Biol. 219: 443–450.CrossRefGoogle Scholar
  23. [23]
    Hayaski, K., T. Ochiai, Y. Ishinoda, T. Okamoto, T. Maruyama, K. Tsuda, and H. Tsubouchi (1997) Relationship between cellular ATP content and cellular functions of primary cultured rat hepatocytes in hypoxia.J. Gastroenterol. Hepatol. 12: 249–56.CrossRefGoogle Scholar
  24. [24]
    Steinmetz, M., D. Le Coq, S. Aymerich, G. Gonzy-Treboul, and P. Gay (1985) The DNA sequence of the gene for the secretedBacillus subtilis enzyme levansucrase and its genetic control sites.Mol. Gen. Genet. 200: 220–228.CrossRefGoogle Scholar
  25. [25]
    Park, Y. S., K. Kai, S. Iijima, and T. Kobayashi (1992) Enhanced σ-galactosidase production by high cell-density culture of recombinantBacillus subtilis with glucose concentration.Biotechnol. Bioeng. 40: 686–696.CrossRefGoogle Scholar
  26. [26]
    Yoon, S. M., S. C. Kim, and J. H. Kim (1994) Identification of inhibitory metabolites in high density culture of recombinantBacillus megatrium PCK 108.Biotechnol. Lett. 16: 1011–1014.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2001

Authors and Affiliations

  1. 1.School of Chemical Engineering and The Institute of Molecular Biology and GeneticsSeoul National UniversitySeoulKorea
  2. 2.Department of Biological Sciences, Division of Cellular and Microbial biologyUniversity of CalgaryCanada

Personalised recommendations