Skip to main content
Log in

Elicitation of camptothecin production in cell cultures ofCamptotheca acuminata

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Campothecin production was increased with elicitors, methyl jasmonate, jasmonic acid, yeast extract elicitor, and ferulic acid in suspension cultures ofCamptotheca acuminata. jasmonic acid was found to be the most efficient elicitor. Camptothecin production increased 11 times by using the optimum dosing concentration of jasmonic acid which was 50 μM. The kinetics of camptothecin accumulation in response to the treatment with jasmonic acid showed that the camptothecin accumulation reached the maximum value at 4 days after jasmonic acid dosing and then a rapid decrease in camptothecin accumulation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wall, M. E., M. C. Wani, C. E. Cook, K. H. Palmer, A. T. McPhail, and G. A. Sim (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor fromCamptotheca acuminata.J. Amer. Chem. Soc. 88:3888–1890.

    Article  CAS  Google Scholar 

  2. Hsiang, Y-H. and L. F. Liu (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin.Cancer Res. 48:1722–1726.

    CAS  Google Scholar 

  3. Hsiang, Y-H, L. F. Liu, M. E. Wall, M. C. Wani, A. W. Nicholas, G. Manikumar, S. Kirschenbaum, S. Silver, and M. Potmesil (1989) DNA topoisomerase I-mediated DNA clevage and cytotoxicity of camptothecin analogue.Cancer Res. 49:4385–4398.

    CAS  Google Scholar 

  4. Jaxel, C., K. W. Kohn, M. C. Wani, M. E. Wall, and Y. Pommier (1989) Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for a specific receptor site and a relation to tumor activity.Cancer Res. 49:1465–1469.

    CAS  Google Scholar 

  5. Zihou, M., H. Malak, and T. G. Burke (1995) Reduced albumin binding promotes the stability and activity of topotecan in human blood.Biochemistry(ACS) 34:13722–13728.

    Google Scholar 

  6. Suzuki, A. and M. Kato (1996) Chemotherapeutic agent CPT-11 induces the new expression of the apoptosis initiator to the cytoplasm.Exp. Cell Res. 227:154–159.

    Article  CAS  Google Scholar 

  7. McNeil, C. (1996) Topotecan: After FDA and ASCO, what’s next?J. Nat. Cancer Inst. 88(12): 788–789.

    Article  CAS  Google Scholar 

  8. Wall, M. E. and M. C. Wani (1995) Camptothecin and Taxol: Discovery to clinic-thirteenth Bruce F. Cain in Memorial Award Lecture,Cancer Res. 55:753–760.

    CAS  Google Scholar 

  9. Byun, S. Y., Y. W. Ryu, C. Kim, and H. Pedersen (1992) Elicitation of sanguinarine production in two-phase cultures ofEschscholtzia california.J. Ferment. Bioeng. 73:380–385

    Article  CAS  Google Scholar 

  10. Sakato, K., H. Tanaka, N. Mukui, and M. Misawa (1974) Isolation and identification of camptothecin from cells ofCamptotheca acuminata suspension cultures.Agr. Biol. Chem. 38:217–218.

    CAS  Google Scholar 

  11. Sakato, K. and M. Misawa (1974) Effects of chemical and physical conditions on growth ofCamptotheca acuminata cell cultures.Agr. Biol. Chem. 38:491–497.

    CAS  Google Scholar 

  12. Hengel, A. J., M. P. Harkes, H. J. Wichers, P. G. M. Hesselink, and R. M. Buitelaar (1992) Characterization of callus and camptothecin production by cell lines ofCamptotheca acuminata.Plant Cell, Tissue and Organ Cult. 28: 11–18.

    Article  Google Scholar 

  13. Grisebach, H. (1986) Phytoalexin accumulation, p. 355. In: H. Kleinkauf (ed.), Regulation of secondary metabolite formation. Worksh Conf, Hoechst 16, VCH Publishers Inc., Weinheim.

    Google Scholar 

  14. Etlinger, C. and L. Lehle (1988) Auxin induces rapid changes in phosphatidyl-inositol metabolites.Natur 331(6152):176.

    Article  Google Scholar 

  15. Mikukami, H., Y. Tabira, and B. E. Ellis (1993) Methyl jasmonate-induced rosmarinic acid biosynthesis inLithospermum erythrorhizon cell suspension cultures.Plant Cell Rep. 12: 706–709.

    Google Scholar 

  16. Staswick, P. E. (1992) Jasmonate, genes, and fragrant signals.Plant Physiology 99:804–807.

    Article  CAS  Google Scholar 

  17. Weiler, E. W., T. Albrecht, B. Groth, Z-Q Zia, M. Luxem, H. Liss, L. Andert, and P. Spengler (1993) Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response ofBryonia dioica.Phytochemistry 32:591–600.

    Article  CAS  Google Scholar 

  18. Gundlach, H., M. Muller, T. Kutchan, and M. Zenk (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures.Proc. Natl. Acad. Sci. U.S.A. 89:2389–2393.

    Article  CAS  Google Scholar 

  19. Kauss, H., K. Krause, and W. Jeblick (1992) Methyl jasmonate conditions parsley suspension cells for increased elicitation of phenylpropanoid defense responses.Biochem. Biophys. Res. Commun. 189:304–308.

    Article  CAS  Google Scholar 

  20. Ju, Y.W., and S.Y. Byun (1994) Precursor feeding experiments with elicitation in suspension cultures ofEschscholtzia californica.Plant Tissue Culture Letters 11:112–115.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yo Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S.H., Byun, S.Y. Elicitation of camptothecin production in cell cultures ofCamptotheca acuminata . Biotechnol. Bioprocess Eng. 3, 91–95 (1998). https://doi.org/10.1007/BF02932509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932509

Key words

Navigation