Skip to main content
Log in

Degradation of trichloroethylene by a growth-arrestedPseudomonas putida

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A toluene-oxidizing strain ofPseudomonas mendocina KR1 containing toluene-4-mono-oxygenase (TMO) completely degrades TCE with the addition of toluene as a co-substrate in aerobic condition. In order to constructin situ bioremediation system for TCE degradation without any growth-stimulating nutrients or toxic inducers such as toluene, we used the carbon-starvation promoter ofPseudomonas putida MK1 (Kim, Y.et al., J. bacteriol., 1995). Upon entry into the stationary phase due to the deprivation of nutrients, this promoter is strongly induced without further cell growth. The TMO gene cluster (4.5 kb) was spliced downstream of the carbon starvation promoter ofPseudomona putida MK1, already cloned in pUC19. TMO under the carbon starvation promoter was not expressed inE. coli cells either in stationary phase or exponential phase. For TMO expression inPseudomonas strains,tmo and carbon starvation promoter region were recloned into a modified broad-host range vector pMMB67HES which was made from pMMB67HE (8.9 kb) by deletion oftac promoter andlacI q (about 1.5 kb). Indigo was produced by TMO under the carbon starvation promoter in aPseudomonas strain of post-exponential phase on M9 (0.2% glucose and 1mM indole) or LB. 18% of TCE was degraded in 14 hours after entering the stationary phase at the initial concentration of 6.6μ M in liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter, R. B., K-M. Yen, and B. D. Ensley (1989) Efficient degradation of trichloroethylene by a recombinantE. coli.Bio/Technol. 7: 282–285.

    Article  CAS  Google Scholar 

  2. Nelson, M. J. K., S. O. Montgomery, E. J. O’nell, and P. H. Pritchard (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate.J. Bacteriol. 52: 383–384.

    CAS  Google Scholar 

  3. Wackett, L. P. and D. T. Gibson (1988) Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies withPseudomonas putida F1.Appl. Environ. Microbiol. 54: 1703–1708.

    CAS  Google Scholar 

  4. Matin, A., C. D. Little, C. D. Fraley, and M. Keyhan (1995) Use of starvation promoters to limit growth and selectively express trichloro-ethylene and phenol transformation activity in recombinantE. coli.Appl. Environ. Microbiol. 61: 3323–3328.

    CAS  Google Scholar 

  5. Kim, Y.J., P. Ayoubi, and A. R. Harker (1996) Constitutive expression of the cloned phenol hydroxylase gene(s) fromAlcali genes eutrophus JMP134 and concomitant trichloroethylene oxidation.Appl. Environ. Microbiol. 62: 3010–3016.

    Google Scholar 

  6. Ensley, B. D., B. J. Ratzkin, T. D. Osslund, M. J. Simon, L. P. Wackett, and D. T. Gibson (1983) Expression of naphthalene oxidation genes inEscherichia coli results in the biosynthesis of indigo.Science 222: 167–169.

    Article  CAS  Google Scholar 

  7. Gossett, J. M. (1987) Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons.Environ. Sci. Technol. 21: 202–208.

    Article  CAS  Google Scholar 

  8. Foerste, J. P., W. Pansegrau, R. Frank, H. Bloecker, P. Scholz, M. Bagdasarian, and E. Lanka (1986) Molecular cloning of the plasmid RP4 primase region in a multi-host rangetacP expression vector.Gene 48: 119–131.

    Article  Google Scholar 

  9. Davison, J., F. Brunel, K. Kaniga, and N. Chevalier (1990) Recombinant DNA vectors for Pseudomonas In:Pseudomonas; Biotransformation, Pathogenesis, and Evolving Biotechnology (Silver, S., Chakrabarty, A.M., Iglewski, B., and Kaplan S.) Ch.24, pp. 242–251. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  10. Kim, Y. J., L. S. Watrud, and A. Matin (1995) A carbon starvation survival gene ofPseudomonas putida is regulated by a54.J. Bacteriol. 177: 1850–1859.

    CAS  Google Scholar 

  11. Luo, J., G. Burns, and J. R. Sokatch (1993) Construction of chromosomalrecA mutants ofPseudomonas PpG2.Gene 136: 263–266.

    Article  CAS  Google Scholar 

  12. Mot, R. D., T. Laeremans, G. Schoofs, and J. Vanderleyden (1993) Characterization of the recA gene fromPseudomonas fluorescens OE 28.3 and construction ofrecA mutant.J. Gen. Microbiol. 139: 49–57.

    Google Scholar 

  13. Mcclay, K., S. H. Streger, and R. J. Steffan (1995) Induction of toluene oxidation activity inPseudomonas mendocina KR1 andPseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes.Appl. Environ. Microbiol. 61: 3479–3481.

    CAS  Google Scholar 

  14. Yen, K-M., and M. R. Karl (1992) Identification of a new gene,tmoF, in thePseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase.J. bacteriol. 174: 7253–7261.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Hyun Hahm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahm, D.H. Degradation of trichloroethylene by a growth-arrestedPseudomonas putida . Biotechnol. Bioprocess Eng. 3, 11–14 (1998). https://doi.org/10.1007/BF02932476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932476

Key words

Navigation