Advertisement

Strain development for the production of D(−)-β-hydroxyisobutyric acid

  • Dong Ho Seong
  • Woo Hyun Paik
  • Nam Ki Kim
  • Seung Woo Baek
Article
  • 45 Downloads

Abstract

Candida rugosa BR-120, which cannot catabolize D(−)-β-hydroxyisobutyric acid (D-HIBA), was developed fromCandida rugosa IFO 0750 by UV irradiationC. rugosa BR-120 could not assimilate propionic acid as a carbon source. It is presumed thatC. rugosa BR-120 lacks HIBA dehydrogenase.C. rugosa BR-120 produced D-HIBA from isobutyric acid (IBA) with a high yield about 94%, whileC. rugosa IFO 0750 did it with about 42% on 5 days batch cultivation. On 5 days fed-batch cultivation,C. rugosa BR-120 andC. rugosa IFO 0750 produced 12.45 g/L and 5.22 g/L of D-HIBA, respectively. The degradation rate of D-HIBA by the resting cell ofC. rugosa IFO 0750 was 31.95%, butC. rugosa BR-120 was 3.08% on 2 days incubation.

Key words

D(−)-β-hydroxyisobutyric acid isobutyric acid Candida rugosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ondetti, M. A., B. Rubin, and D. W. Cushman (1977) Design of specific inhibitor of angiotensin-converting enzyme: new class of orally active antihypertensive agent.Science 196: 441–444.CrossRefGoogle Scholar
  2. [2]
    Sheldon, R. A., P. A. Porskamp, and T. Hoeve (1985) Advantages and limitations of chemical optical resolution, p. 59–80. In: Tramper, J., Plas, H. C. and Linko, P. (ed.),Biocatalysts in organic syntheses. Elsevier: Netherlands.Google Scholar
  3. [3]
    Bayley, C. R. and N. A. Vaidya (1992) Resolution of racemates by diatereomeric salt formation, p. 69–77. In Collins, A. N., Sheldrake, G. N., and Crosby, J. (ed.),Chirality in industry. John Wiley & Sons, England.Google Scholar
  4. [4]
    Shimazaki, M., J. Hasegawa, K. Kan, K. Nomura, Y. Nose, H. Kondo, T. Ohashi, and K. Watanabe (1982) Synthesis of captopril starting from an optically active β-hydroxy acid.Chem. pharm. Bull. 30(9): 3139–3146.Google Scholar
  5. [5]
    Hasegawa, J., M. Ogura, S. Hamaguchi, M. Shimazaki, H. Kawaharada, and K. Watanabe (1981) Stereospecific conversion of isobutyric acid to D-β-hydroxyisobutyric acid by microorganism.J. Ferment. Technol. 59(3): 203–208.Google Scholar
  6. [6]
    Hasegawa, J., M. Ogura, H. Kanema, N. Noda, H. Kawaharada, and K. Watanabe (1982) Production of D-β-hydroxyisobutyric acid byCandida rugosa and its mutant.J. Ferment. Technol. 60(6): 501–508.Google Scholar
  7. [7]
    Baek, S. W., N. K. Kim, D. H. Seong, and W. H. Paik (1996) Production of D(−)-β-hydroxyisobutyric acid byCandida rugosa. Proceedings of ’96 Korean Institute of Biotechnology and Bioengineering Spring Meeting.: 100.Google Scholar
  8. [8]
    Chaplin, M. F. and J. F. Kennedy (1986) A practical approach, p. 2–3.Carbohydrate analysis. IRL PRESS. Oxford, Washington DC.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 1997

Authors and Affiliations

  • Dong Ho Seong
    • 1
  • Woo Hyun Paik
    • 1
  • Nam Ki Kim
    • 2
  • Seung Woo Baek
    • 2
  1. 1.Boryung Central Research InstituteKunpoKorea
  2. 2.Department of Chemical EngineeringSung Kyun Kwan UniversitySuwonKorea

Personalised recommendations