Characterization of sulfur oxidation by an autotrophic sulfur oxidizer,Thiobacillus sp. ASWW-2

  • Eun Young Lee
  • Kyung-Suk Cho
  • Hee Wook Ryu


An autotrophic sulfur oxidizer,Thiobacillus sp. ASWW-2, was isolated from activated sludge, and its sulfur oxidation activity was characterized.Thiobacillus sp. ASWW-2 could oxidize elemental sulfur on the broad range from pH 2 to 8. When 5–50 g/L of elemental sulfur was supplemented as a substrate, the growth and sulfur oxidation activity ofThiobacillus sp. ASWW-2 was not inhibited. The specific sulfur oxidation rate of strain ASWW-2 decreased gradually until sulfate was accumulated in medium up to 10 g/L. In the range of sulfate concentration from 10 g/L to 50 g/L, the sulfur oxidation rate could keep over 2.0 g-S/g-DCW-d. It indicated thatThiobacillus sp. ASWW-2 has tolerance to high concentration of sulfate.


autotrophic sulfur oxidizing bacterium elemental sulfur tolerance to sulfate biofilter 


  1. [1]
    Eikum, A. S. and R. Storhang (1986) Odour problems related to waste water and sludge treatment. pp. 12–18. In: V. C. Neilsen, J. H. Voorgurg, and P. L. Hermite, (Eds.),Odour Provention and Control of Organic Sludge and Livestock Farming. Elsevier Applied Science Publishers, London.Google Scholar
  2. [2]
    Yong, Y. and E. R. Allen (1994) Biofiltration control of hydrogen sulfide 1. Design and operational parameters.J. Air Waste Magm. Assoc. 44: 863–868.Google Scholar
  3. [3]
    Vanhoorne, M., A. Rouck, and D. de. Bacquer (1995) Epidemiological study of eye irritation by hydrogen sulphide and or carbon disulphid exposure in viscose rayon workers.Ann. Occup. Hyg. 39: 307–315.Google Scholar
  4. [4]
    Mori, T., M. Koga, Y. Hikosaka, T. Nonaka, F. Mishina, Y. Sakai, and J. Koizumi (1991) Microbial corrosion of concrete sewer pipes, H2S production from sediments and determination of corrosion rate.Wat. Sci. Tech., 23: 1275–1282.Google Scholar
  5. [5]
    Cho, K. S. and T. Mori (1995) A newly isolated fungus participates in the corrosion of concrete sewer pipes.Wat. Sci. Tech. 31: 263–271.CrossRefGoogle Scholar
  6. [6]
    Shoda, M. (1991) Methods for the biological treatment of exhaust gases in biological degradation of waste. pp. 31–46. In: A. M. Martin (ed.),Biological Degradation of Wastes. Elsevier Applied Science Publishers, London.Google Scholar
  7. [7]
    Cho, K. S., L. Zhang, M. Hirai and M. Shoda (1991) Removal characteristics of hydrogen sulfide and methanethiol byThiobacillus sp. isolated from peat in biological deodorization.J Ferment. Bioeng. 71: 44–49.CrossRefGoogle Scholar
  8. [8]
    Rands M. B., D. E. Cooper, C. P. Woo, G. C. Fletcher, and K. A. Rolfe (1981) Compost filters for H2S removal from anaerobio digestion and rendering exhausts.J. Water Pollut. Control Fed. 53: 185–189.Google Scholar
  9. [9]
    Cho, K. S., M. Hirai and M. Shoda (1991) Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide byThiobacillus thioparus DW44 isolated from peat biofilter.J. Ferment. Bioeng. 71: 384–339.CrossRefGoogle Scholar
  10. [10]
    Cho, K. S., M. Hirai and M. Shoda (1992) Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculate withThiobacillus thioparus DW44.J. Ferment. Bioeng. 73: 46–50.CrossRefGoogle Scholar
  11. [11]
    Sublette, K. L. and N. D. Sylvesten (1987) Oxidation of hydrogen sulfide byThiobacillus denitrificans: desulfurization of natural gas.Biotechnol Bioeng. 29: 249–257.CrossRefGoogle Scholar
  12. [12]
    Kanagawa, T. and E. Mikami (1989) Removal of methanethiol. dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air byThiobacillus thioparus TK-m.Appl. Environ. Microbiol. 55: 555–558.Google Scholar
  13. [13]
    Chung, Y. C., C. Huang and C. F. Li (1997) Removal characteristics of H2S byThiobacillus novellus CH13 biofilter in autotrophic and mixotrophic environments.J. Environ. Sci. Health. A 32: 1435–1450.CrossRefGoogle Scholar
  14. [14]
    Larkin, J. M. (1980) Isolation ofThiotrix in pure culture and observation of a filamentous epiphyte onThiotrix.Curr. Microbiol. 4: 144–158.CrossRefGoogle Scholar
  15. [15]
    Nelson, D. C. and H. W. Jannasch (1983) Chemoautotrophic growth of a marineBeggiatoa in sulfide-gradient cultures.Arch. Microbiol. 136: 262–269.CrossRefGoogle Scholar
  16. [16]
    Zhang, L., M. Hirai and M. Shoda (1991) Removal characteristics of dimethyl sulfide methanethiol and hydrogen sulfide byHyphomicrobium sp. 155 isolated from peat biofilter.J. Ferment. Bioeng. 72: 392–396.CrossRefGoogle Scholar
  17. [17]
    Steinmetz, M. A. and U. Fisher (1982) Cytochromes of the green sulfur bacteriumChlorobium vibrioformef. thiosulfatophilum. Purification, characterization and sulfur metabolism.Arch. Microbiol. 131: 19–26.CrossRefGoogle Scholar
  18. [18]
    Gray, G. O. and J. G. Knaff (1982) The role of a cytochromec-552-cytochromec complex in the oxidation sulfide inChromatium vinosum.Biochim. Biophys. Acta 680: 290–296.CrossRefGoogle Scholar
  19. [19]
    Then, J. and H. G. Truper (1983) Sulfide oxidation inEctothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochromec-551.Arch. Microbiol. 135: 254–258.CrossRefGoogle Scholar
  20. [20]
    Brume, D. C. and H. G. Truper (1986) Noncyclic electron transport in chromatophores from photolithotrophically grownRhodobacter sulfidophilis.Arch. Microbiol. 145: 295–301.CrossRefGoogle Scholar
  21. [21]
    Chung, Y. C., C. Huang and C. P. Tseng (1996) Biodegradation of hydrogen sulfide by a laboratory-scale immobilizedPseudomonas putida CH11 biofilter.Biotechnol. Prog. 12: 773–778.CrossRefGoogle Scholar
  22. [22]
    Cho, K. S., M. Hirai and M. Shoda (1992) Degradation of hydrogen sulfide byXanthomonas sp. strain DY44 isolated from peat.Appl. Environ. Microbiol. 58: 1183–1189.Google Scholar
  23. [23]
    Kelly, D. P. (1985) Thysiology of the thiobacilli: elucdating the sulphur oxidation pathway.Microbiol. Sci. 2: 105–109.Google Scholar
  24. [24]
    Kuenen, J. C. (1989) Colorless sulfur bacteria, pp. 1834–1871. In: J. T. Staley, M. P. Bryant, N. Pfenning, and J. G. Holt, (eds.),Bergey’s Manual of Systematic Bacteriology, Vol. 3, The Williams Wilkins Co., Baltimore.Google Scholar
  25. [25]
    Katayama-F., Y., N. Tsuzaki and H. Kuraishi (1982) Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genusThiobacillus.J. Gen. Microbiol. 128: 1599–1611.Google Scholar
  26. [26]
    Takakuwa, S., T. Fujimori and H. Iwasaki (1979) Some properties of cell sulfur adhesion inThiobacillus thiooxidans.J. Gen. Appl. Microbiol. 25: 21–29.CrossRefGoogle Scholar
  27. [27]
    Takeuchi, T. L. and I. Suzuki (1997) Cell hydrophobicity and sulfur adhesion ofThiobacillus thiooxidans.,Appl. Environ. Microbiol. 63: 2058–2061.Google Scholar
  28. [28]
    Konishi, Y., S. Asai and N. Yoshida (1995) Growth kinetics ofThiobacillus thiooxidans on the surface of elemental sulfur.App. Environ. Microb. 61: 3617–3622.Google Scholar
  29. [29]
    Porro, S., S. Ramirez, C. Reche, C. Curutchet, A. Alonso-Romanowski, E. Donati (1997) Bacterial attachment: its role in bioleaching processes.Process Biochem. 32: 573–578CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2000

Authors and Affiliations

  1. 1.Department of Environmental Science and EngineeringEwha Womans UniversitySeoulKorea
  2. 2.Department of Chemical and Environmental EngineeringSoong Sil UniversitySeoulKorea

Personalised recommendations