Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol



Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeastSaccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose andS. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and 30°C. This compatible xylose isomerase fromCandida boidinii, having an optimum pH and temperature range of 4.5–5.0 and 30–50°C respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol byS. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of 42.8%.


xylose isomerase Saccharomyces cerevisiae Candida boidinii xylose ethanol fermentation bioconversion 


  1. [1]
    Linden, T. and B. Hahn-Hagerdal (1989) Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase.Enz. Microbial Technol. 11: 583–589.CrossRefGoogle Scholar
  2. [2]
    Boynton, B. L. and J. D. McMillan (1994) High yield shake flask fermentation of xylose to ethanol.Appl. Biochem. Biotechnol. 45/46: 509–514.CrossRefGoogle Scholar
  3. [3]
    Wyman, C. E. (1994) Ethanol production from lingocellulosic biomass: overview. pp. 1–35. In: C. E. Wyman, (ed.)Handbook on Bioethanol: Production and Utilization. Taylor and Francis. Washington DC, U.S.A.Google Scholar
  4. [4]
    Chandrakant, P. and V. S. Bisaria (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol.Crit. Rev. Biotechnol. 18: 295–331.CrossRefGoogle Scholar
  5. [5]
    Singh, A. and P. Mishra (1995) Xylose fermentation. p. 33–50. In:Progress in Industrial Microbiology. Elsevier Science, London, U.K.Google Scholar
  6. [6]
    Chen, W. P. (1980) Glucose isomerase (a review).Process. Biochem. 15(5): 30–35.Google Scholar
  7. [7]
    Chen, W. P. (1980) Glucose isomerase (a review).Process. Biochem. 15(6): 36–41.Google Scholar
  8. [8]
    Vongsuvanlert, V. and Y. Tani (1988) Purification and characterization of xylose isomerase of a methanol yeast.Candida boidinil which is involved in sorbitol production from glucose.Agr. Biol. Chem. 52(7): 1817–1824.Google Scholar
  9. [9]
    Chatterjee, U., A. Kumar, and G. Sanwal (1990) Goat liver catalase immobilized on various solid supports.J. Ferment. Bioeng. 70(6): 429–430.CrossRefGoogle Scholar
  10. [10]
    Yamanaka, K. (1967) D-xylose isomerase.Methods Enzymol. 9: 588–593.CrossRefGoogle Scholar
  11. [11]
    Dische, Z. and E. Borenfreund (1951) A new spectrophotometric method for the detection and determination of keto sugars and trioses.J. Biol. Chem. 192: 583–587.Google Scholar
  12. [12]
    Lowry, O. H., N. S. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurement with the Folin Phenol reagent.J. Biol. Chem. 193: 265–275.Google Scholar
  13. [13]
    Sunitha, J. and P. K. Sai Prakash (1994) Kinetics of hydrolysis of sucrose catalyzed by invertase immobilized on egg shells and on zeolites.Indian J. Biochem. Biophys. 31: 486–489.Google Scholar
  14. [14]
    Woodward, J. (1985) Immobilized Cells and Enzymes: Adsorption and Covalent Coupling. pp. 3–17 In: J. Woodward (ed.)Immobilized Cells and Enzymes. IRL Press. Oxford England.Google Scholar
  15. [15]
    Kent, C. A. and A. N. Emery (1974) The preparation of an immobilized glucose isomerase.J. Appl. Chem. Biotechnol. 24: 663–676.CrossRefGoogle Scholar
  16. [16]
    Huitron, C. and J. Limon-Lason (1978) Immobilization of glucose isomerase to ion exchange materials.Biotechnol. Bioeng. 20: 1377–1391.CrossRefGoogle Scholar
  17. [17]
    Sanchez, S. and K. L. Smiley (1975) Properties of D-xylose isomerase fromStreptomyces albus.Appl. Microbiol. 29 (6): 745–750.Google Scholar
  18. [18]
    Khire, J. M., A. H. Lachke, M. C. Srinivasan, and H. G. Vartak, (1990) Characterization of the purified extracellular D-xylose isomerase devoid of D-glucose isomerase fromChainia sp.Appl. Biochem. Biotechnol. 23: 25–39.CrossRefGoogle Scholar
  19. [19]
    Kawai, Y., H. Konishi, H. Horitsu, H. Sakurai, T. Kazuhiro, T. Suzuki, and K. Kawai (1994) Purification and characterization of D-xylose isomerase fromBifidobacterium adolescentis.Biosci. Biotechnol. Biochem. 58(4): 691–694.Google Scholar
  20. [20]
    Lastick, S. M., M. Y. Tucker, J. R. Beyette, G. R. Noll, and K. Grohmann (1989) Simultaneous fermentation and isomerisation of xylose.Appl. Microbiol. Biotechnol. 30: 574–579.CrossRefGoogle Scholar
  21. [21]
    Tsao, G. T., M. R. Ladisch, M. Voloch, and P. Biernkopwski (1982) Production of ethanol and chemicals from cellulosic materials.Process Biochem. 17: 34–38.Google Scholar
  22. [22]
    Cahn, D. S., J. Horak, A. Kotyk, and L. Rihova (1975) Transport of acyclic polyols inSaccharomyces cerevisiae.Folia Microbiol. 20: 320–325.CrossRefGoogle Scholar
  23. [23]
    Hsiao, H. Y., L. Chiang, L. Chen, and G. T. Tsao (1982) Sequential utilization of mixed monosaccharides by yeasts.Appl. Env. Microbiol. 43(4): 840–845.Google Scholar
  24. [24]
    Chiang, L. C., C. S. Gong, L. F. Chen, and G. T. Tsao (1981) D-xylulose fermentation to ethanol bySaccharomyces cerevisiae.Appl. Env. Microbiol. 42: 284–289.Google Scholar
  25. [25]
    Hsiao, H. Y., L. Chiang, L. Chen, and G. T. Tsao (1982) Effect of borate on isomerisation and yeast fermentation of high xylulose solution and acid hydrolysate of hemicellose.Enzyme Microb. Technol. 4: 25–31.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2000

Authors and Affiliations

  1. 1.Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations