Biotechnology and Bioprocess Engineering

, Volume 6, Issue 6, pp 426–432 | Cite as

Development of a supported emulsion liquid membrane system for propionic acid separation in a microgravity environment

  • Jin Li
  • Shih-Yao B. Hu
  • John M. Wiencek


Perstractive fermentation is a good way to increase the productivity of bioreactors. UsingPropionibacteria as the model system, the feasibility of using supported emulsion liquid membrane (SELM) for perstractive fermentation is assessed in this study. Five industrial solvents were considered as the solvent for preparing the SELM. The more polar a solvent is, the higher the partition coefficient. However, toxicity of a solvent also increases with its polarity. CO-1055 (industrial decanol/octanol blend) has the highest partition coefficient toward propionic acid among the solvents that has no molecular toxicity towardPropionibacteria. A preliminary extraction study was conducted using tetradecane as solvent in a hydrophobic hollow fiber contactor. The result confirmed that SELM eliminates the equilibrium limitation of conventional liquid-liquid extraction, and allows the use of a non-toxic solvent with low partition coefficient.


microgravity supported emulsion liquid membrane hollow fiber contactor extraction toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Matsumura, M., and H. Märkl (1986) Elimination of ethanol inhibition by perstraction.Biotechnol. Bioeng. 28: 534–541.CrossRefGoogle Scholar
  2. [2]
    Vatai, G., and M. N. Tekic (1991) Membrane-based ethanol extraction with hollow-fiber module.Sep. Sci. Technol. 26: 1005–1011.CrossRefGoogle Scholar
  3. [3]
    Gawronski, R., and B. Wrzesinska (2000) Kinetics of solvent extraction in hollow-fiber contactors.J. Membr. Sci. 168: 213–222.CrossRefGoogle Scholar
  4. [4]
    Ozadali, F., B. Glatz, and C. Glatz (1996) Fed-batch fermentation with and without on-line extraction for propionic and acetic acid production byPropionibactorium acidipropionici.Appl. Microbiol. Biotechnol. 44: 710–716.Google Scholar
  5. [5]
    Gu, Z., B. Glatz, and C. Glatz (1998) Propionic acid production by extractive fermentation. I. Solvent considerations.Biotechnol. Bioeng. 57: 454–461.CrossRefGoogle Scholar
  6. [6]
    Yabannavar, V. M., and D. I. C. Wang (1991) Extractive fermentation for lactic acid production.Biotechnol. Bioeng. 37: 1095–1100.CrossRefGoogle Scholar
  7. [7]
    Bassetti, L., and J. Tramper (1994) Organic solvent toxicity inMorinda citrifolia cell suspensions.Enzyme Microb. Technol. 16: 642–648.CrossRefGoogle Scholar
  8. [8]
    Laane, C., S. Boeren, and K. Vos (1985) On optimizing organic solvents in multi-liquid-phase biocatalysis.Trends Biotechnol. 3: 251–252.CrossRefGoogle Scholar
  9. [9]
    Hu, S. B., and J. M. Wiencek (1998) Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor.AIChE J. 44: 570–581.CrossRefGoogle Scholar
  10. [10]
    Wiencek, J. M., S. B. Hu, and B. Raghuraman (1996) Use of emulsions, microemulsions, and hollow fiber contactors as liquid membranes.ACS Symp. Ser. (Chemical Sepalations with Liquid Membranes) 642: 319–328.Google Scholar
  11. [11]
    Wiencek, J. M., and S. B. Hu (2000) Emulsion liquid membrane extraction in a hollow fiber contactor.Chem. Eng. Technol. 28: 1–6.Google Scholar
  12. [12]
    Raghuraman, B., and J. M. Wiencek (1993) Extraction with emulsion liquid membranes in a hollow fiber contactor.AIChe J. 39: 1885–1889.CrossRefGoogle Scholar
  13. [13]
    Nanoti, A., S. K. Ganguly, A. N. Goswami and B. S. Rawat (1997) Removal of phenols from wast water using liquid membranes in a microporous hollow-fibermembrane extractor.Ind. Eng. Chem. Res. 36: 4369–4373.CrossRefGoogle Scholar
  14. [14]
    Li, N. N. (1968) Separation of hydrocarbon with liquid membrane.U.S. Patent 3,410,794.Google Scholar
  15. [15]
    Woskow, S., and B. Glatz (1991) Propionic acid production by a propionic acid-tolerant strain ofPrepionibacterium acidipropionici in batch and semicontinuous fermentation.Appl. Environ. Microbiol. 57: 2821–2828.Google Scholar
  16. [16]
    Barton, W., and A. Daugulis (1992) Evaluation of solvents for extractive butanol fermentation withClostridium acctobutylicum and the use of poly (propylene glycol) 1,200Appl. Microbiol. Biotechnol. 36: 632–639.CrossRefGoogle Scholar
  17. [17]
    Bruce, L. and A. Daugulis (1991) Solvent selection strategies for extractive biocatalysis.Biotechnol. Preg. 7: 116–124.CrossRefGoogle Scholar
  18. [18]
    Yabannavar, V. M., and D. I. C. Wang (1991) Strategies for reducing solvent toxicity in extractive fermentations.Biotechnol. Bioeng. 37: 716–722.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2001

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringThe University of IowaIowa CityUSA

Personalised recommendations