Biotechnology and Bioprocess Engineering

, Volume 10, Issue 6, pp 471–481 | Cite as

Biological upgrading of heavy crude oil

  • Vladimir Leon
  • Manoj KumarEmail author


Heavy crudes (bitumen) are extremely viscous and contain high concentrations of asphaltene, resins, nitrogen and sulfur containing heteroaromatics and several metals, particularly nickel and vanadium. These properties of heavy crude oil present serious operational problems in heavy oil production and downstream processing. There are vast deposits of heavy crude oils in many parts of the world. In fact, these reserves are estimated at more than seven times the known remaining reserves of conventional crude oils. It has been proven that reserves of conventional crude oil are being depleted, thus there is a growing interest in the utilization of these vast resources of unconventional oils to produce refined fuels and petrochemicals by upgrading. Presently, the methods used for reducing viscosity and upgradation is cost intensive, less selective and environmentally reactive. Biological processing of heavy crudes may provide an ecofriendly alternative or complementary process with less severe process conditions and higher selectivity to specific reactions to upgrade heavy crude oil. This review describes the prospects and strengths of biological processes for upgrading of heavy crude oil.


heavy crude oil asphaltene upgradation bioprocess viscosity reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hunt, J. M. (1979)Petroleum Geochemistry and Geology. 2nd ed., W.H. Freeman, San Francisco, USA.Google Scholar
  2. [2]
    Martinez, A. R. (1984) Report of working group on definitions. pp. 1xvii-1xviii. In: R. F. Meyer, J. C. Wynn, and J. C. Olson (eds.),The Future of Heavy Crude and Tar Sands, Second International Conference, McGraw-Hill, New York, NY, USA.Google Scholar
  3. [3]
    Petersen, N. F. and P. J. Hickey (1987) California Plio-Miocene oils: Evidence of early generation. pp. 351–359. In: R. F. Meyer (eds.),Exploration for Heavy Crude Oil and Natural Bitumen.Am. Assoc. Petrol. Geol., USA.Google Scholar
  4. [4]
    Roadifer, R. E. (1987) Size distribution of the worlds largest known oil and tar accumulations. pp. 3–23. In: R. F. Meyer (eds.):Exploration for Heavy Crude Oil and Bitumen.Am. Assoc. Petrol. Geol., USA.Google Scholar
  5. [5]
    Wu, W. and J. Chen (1999) Characteristics of Chinese heavy crudes.J. Pet. Sci. Eng. 22: 25–30.CrossRefGoogle Scholar
  6. [6]
    Yaghi, B. M. and A. Al-Bemani (2002) Heavy crude oil viscosity reduction for pipeline transportation.Energy Sources 24: 93–102.CrossRefGoogle Scholar
  7. [7]
    Leon, V. (2000) Composition and structure of heavy oils.J. CODICID 2: 34–43.Google Scholar
  8. [8]
    Leon, V. (1998) New vision on heavy crude oil molecular structure.Vision Technologia 5: 131–138 (in Spanish).Google Scholar
  9. [9]
    Speight, J. G. (1998)The Chemistry and Technology of Petroleum. pp. 412–467. Marcel Dekker, Inc., New York, NY, USA.Google Scholar
  10. [10]
    Payzant, J. D., E. M. Lown, and O. P. Strausz (1991) Structural units of Athabasca asphaltene: the aromatics with a linear carbon network.Energy Fuels 5: 445–453.CrossRefGoogle Scholar
  11. [11]
    Groenzin, H. and O. C. Mullins (2000) Molecular size and structure of asphaltenes from various sources.Energy Fuels 14: 677–684.CrossRefGoogle Scholar
  12. [12]
    Artok, L., Y. Su, Y. Hirose, M. Hosokawa, S. Murata, and M. Nomura (1999) Structure and reactivity of petroleumderived asphaltene.Energy Fuels 13: 287–296.CrossRefGoogle Scholar
  13. [13]
    Strausz, O. P., T. W. Mojelsky, E. M. Lown, I. Kowalewski, and F. Behar (1999) Structural features of Boscan and Duri asphaltenes.Energy Fuels 13: 228–247.CrossRefGoogle Scholar
  14. [14]
    Strausz, O. P., T. W. Mojelsky, and E. M. Lown (1992) The molecular structure of asphaltene: an unfolding story.Fuel 71: 1355–1363.CrossRefGoogle Scholar
  15. [15]
    Peng, P., A. Morales-Izquierdo, A. Hogg, and O. P. Strausz (1997) Molecular structure of athabasca asphaltene: sulfide, ether, and ester linkages.Energy Fuels 11: 1171–1187.CrossRefGoogle Scholar
  16. [16]
    Bressler, D. C. and M. R. Gray (2003) Transport and reaction processes in bioremediation of organic contaminants. 1. Review of bacterial degradation and transport.Int. J. Chem. React. Eng. 1: R3.Google Scholar
  17. [17]
    Gray, M. R. (1994)Upgrading Petroleum Residues and Heavy Oils. Marcel Dekker, Inc., New York, NY, USA.Google Scholar
  18. [18]
    Pineda-Flores, G., G. Boll-Arguello, C. Lira-Galeana, and A. M. Mesta-Howard (2004) A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source.Biodegradation 15: 145–151.CrossRefGoogle Scholar
  19. [19]
    Ferrari, M. D., C. Albornoz, and E. Neirotti (1994) Biodegradability in soil of residual hydrocarbons in petroleum tank bottoms.Rev. Argent. Microbiol. 26: 157–170 (in Spanish).Google Scholar
  20. [20]
    Pendrys, J. P. (1989) Biodegradation of asphalt cement-20 by aerobic bacteria.Appl. Environ. Microbiol. 55: 1357–1362.Google Scholar
  21. [21]
    Rontani, J. F., F. Bosser-Joulak, E. Rambeloarisoa, J. C. Bertrand, and G. R. Faure (1985) Analytical study of asphalt crude oil and asphaltenes biodegradation.Chemosphere 14: 1413–1422.CrossRefGoogle Scholar
  22. [22]
    Rojas-Avelizapa, N. G., E. Cervantes-Gonzalez, R. Cruz-Camarillo, and L. I. Rojas-Avelizapa (2002) Degradation of aromatic and asphaltenic fractions bySerratia liquefasciens andBacillus sp.Bull. Environ. Contam. Toxicol. 69: 833–842.CrossRefGoogle Scholar
  23. [23]
    Premuzic, E. T., M. S. Lin, and B. Manowitz (1994) The significance of chemical markers in the bioprocessing of fuels.Fuel Process Technol. 40: 227–239.CrossRefGoogle Scholar
  24. [24]
    Lin, M. S., E. T. Premuzic, J. H. Yablon, and W. M. Zhou (1996) Biochemical processing of heavy oils and residuum.Appl. Biochem. Biotechnol. 57/58: 659–664.CrossRefGoogle Scholar
  25. [25]
    Premuzic, E. T. and M. S. Lin (1999) Induced biochemical conversions of heavy crude oils.J. Pet. Sci. Eng. 22: 171–180.CrossRefGoogle Scholar
  26. [26]
    Premuzic, E. T., M. S. Lin, M. Bohenek, and W. M. Zhou (1999) Bioconversion reactions in asphaltenes and heavy crude oils.Energy Fuels 13: 297–304.CrossRefGoogle Scholar
  27. [27]
    Premuzic, E. T., M. S. Lin, H. Lian, W. M. Zhou, and J. Yablon (1997) The use of chemical markers in the evaluation of crude bioconversion products, technology, and economic analysis.Fuel Process. Technol. 52: 207–223.CrossRefGoogle Scholar
  28. [28]
    Premuzic, E. T., M. S. Lin, and L. Racaniello (1993) Chemical markers of induced microbial transformations in crude oils. pp. 37–54. In: E. T. Premuzic and A. Woodhead (eds.).Microbial Enhancement of Oil Recovery: Recent Advances. Elsevier, NY, USA.CrossRefGoogle Scholar
  29. [29]
    Premuzic, E. T. (1994) Biochemically enhanced oil recovery and oil treatment.US patent 5,297,025.Google Scholar
  30. [30]
    Premuzic, E. T. and M. S. Lin (1996) Process for producing modified organisms for oil treatment at high temperatures, pressure and salinity.US Patent 5,492,828.Google Scholar
  31. [31]
    Premuzic, E. T. and M. S. Lin (1999) Biochemical upgrading of oils.US Patent 5,858,766.Google Scholar
  32. [32]
    Kanaly, A. R. and S. Harayama (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria.J. Bacteriol. 182: 2059–2067.CrossRefGoogle Scholar
  33. [33]
    Van Hamme, J. D., P. M. Fedorak, J. M. Foght, M. R. Gray, and H. D. Dettman (2004) Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage.Appl Environ. Microbiol. 70: 1487–1493.CrossRefGoogle Scholar
  34. [34]
    Fedorak, P. M., K. M. Semple, R. Vazquez-Duhalt, and D. W. S. Westlake (1993) Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes.Enzyme Microb. Technol. 15: 429–437.CrossRefGoogle Scholar
  35. [35]
    Mogollon, L., R. Rodriguez, W. Larrota, C. Ortiz, and R. Torres (1998) Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes.Appl. Biochem. Biotechnol. 70–72: 765–767.CrossRefGoogle Scholar
  36. [36]
    Tinoco, R. and R. Vazquez-Duhalt (1998) Chemical modification of cytochromec improves their properties in oxidation of polycyclic aromatic hydrocarbons.Enzyme Microb. Technol. 22: 8–12.CrossRefGoogle Scholar
  37. [37]
    Vazquez-Duhalt, R., D. W. S. Westlake, and P. M. Fedorak (1993) Cytochrome c as biocatalyst for the oxidation of thiophenes and organosulfides.Enzyme Microb. Technol. 15: 494–499.CrossRefGoogle Scholar
  38. [38]
    Garcia-Arellano, H., E. Buenrostro-Gonzalez, and R. Vazquez-Duhalt (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochromec.Biotechnol. Bioeng. 85: 790–798.CrossRefGoogle Scholar
  39. [39]
    Garcia-Arellano, H., B. Valderrama, G. Saab-Rincon, and R. Vazquez-Duhalt (2002) High temperature biocatalysis by chemically modified cytochrome c.Bioconjug. Chem. 13: 1336–1344.CrossRefGoogle Scholar
  40. [40]
    Wernerus, H. and S. Stahl (2004) Biotechnological applications for surface-engineered bacteria.Biotechnol. Appl. Biochem. 40: 209–228.CrossRefGoogle Scholar
  41. [41]
    Van Hamme, J. D., A. Singh, and O. P. Ward (2003) Recent advances in petroleum microbiology.Microbiol. Mol. Biol. Rev. 67: 503–549.CrossRefGoogle Scholar
  42. [42]
    Gray, K. A., G. T. Mrachko, and C. H. Squires (2003) Biodesulfurization of fossil fuels.Curr. Opin. Microbiol. 6: 229–235.CrossRefGoogle Scholar
  43. [43]
    Monticello, D. J. (2000) Biodesulfurization and the upgrading of petroleum distillates.Curr. Opin. Biotechnol. 11: 540–546.CrossRefGoogle Scholar
  44. [44]
    Konishi, J., Y. Ishii, K. Okumura, and M. Suzuki (2000) High temperature desulfurization by microorganisms.US Patent 6,130,081.Google Scholar
  45. [45]
    Baldi, F., M. Pepi, and F. Fava (2003) Growth ofRhodosporidium toruloides strain DBVPG 6662 on dibenzothiophene crystals and orimulsion.Appl. Environ. Microbiol. 69: 4689–4696.CrossRefGoogle Scholar
  46. [46]
    Bhadra, A., J. M. Scharer, and M. Moo-Young (1987) Microbial desulphurization of heavy oils and bitumen.Biotechnol. Adv. 5: 1–27.CrossRefGoogle Scholar
  47. [47]
    Borgne, S. L. and R. Quintero (2003) Biotechnological processes for refining of petroleum.Fuel Process. Technol. 81: 155–169.CrossRefGoogle Scholar
  48. [48]
    Benedik, M. J., P. R. Gibbs, R. R. Riddle, and R. C. Wilson (1998) Microbial denitrogenation of fossiluels.Trends Biotechnol. 16: 390–395.CrossRefGoogle Scholar
  49. [49]
    Riddle, R. R., P. R. Gibbs, R. C. Wilson, and M. J. Benedik (2003) Recombinant carbazole-degrading strains for enhanced petroleum processing.J. Ind. Microbiol. Biotechnol. 30: 6–12.Google Scholar
  50. [50]
    Kilbane, J. J., A. Daram, J. Abbasian, and K. J. Kayser (2002) Isolation and characterization ofSphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum.Biochem. Biophys. Res. Commun. 297: 242–248.CrossRefGoogle Scholar
  51. [51]
    Bressler, D. C., L. A. Kirkpatrick, J. M. Foght, P. M. Fedorak, and M. R. Gray (2003) Denitrogenation of carbazole by combined biological and catalytic treatment. American Chemical Society, Petroleum Chemistry Division Preprints 48: 44–46.Google Scholar
  52. [52]
    Bressler, D. C., P. M. Fedorak, and M. A. Pickard (2000) Oxidation of carbazole, p-ethylcarbazole, fluorene and dibenzothiophene by the laccase ofCoriolopsis gallica.Biotechnol. Lett. 22: 1119–1125.CrossRefGoogle Scholar
  53. [53]
    Xu, G. W., K. W. Mitchell, and D. J. Monticello (1998) Fuel product produced by demetalizing a fossil fuel with an enzyme.US Patent 5,624,844.Google Scholar
  54. [54]
    Vazquez-Duhalt, R., E. Torres, B. Valderrama, and S. Le Borgne (2002) Will biochemical catalysis impact the petroleum refining industry?Energy Fuel 16: 1239–1250.CrossRefGoogle Scholar
  55. [55]
    Kirkwood, K. M., S. Ebert, D. Kharbanda, J. M. Foght, P. M. Fedorak, and M. R. Gray (2003) Bioprocessing for heavy crude oil viscosity reduction.Proceedings of the American Chemical Society. March 23–27. New Orleans, LA, USA.Google Scholar
  56. [56]
    Wu, Q., M. R. Gray, M. A. Pickard, P. M. Fedorak, and J. M. Foght (2003) Biocatalytic ring opening of dibenzothiophene and phenanthrene as model substrates dissolved in crude oil.Proceedings of the American Chemical Society. March 23–27, New Orleans, LA, USA.Google Scholar
  57. [57]
    Coyle, C. L., M. Siskin, D. T. Ferrughelli, M. S. P. Logan, and G. Zylstra (2000) Biological activation of aromatics for chemical processing and/or upgrading of aromatic compounds. petroleum coal, resid, bitumen and other petrochemical streamsUS Patent 6,136,946.Google Scholar
  58. [58]
    Leon, V., S. Fuenmayor, A. DeSisto, A. Marcano, S. Munoz, and A. Rivas (2003) Isolation of bacteria strains capacities in craking and desulfurization of heavy crude oil.Proceeding of 2nd ICPB The Development and Prospective of Biotechnology Applied to the Oil Industry. November 5–7. Mexico City, Mexico.Google Scholar
  59. [59]
    Fedorak, P. M., K. M. Semple, R. Vazquez-Duhalt, and D. W. S. Westlake (1993) Chloroperoxidasemediated modifications of petroporphyrins and asphaltenes.Enzyme Microb. Technol. 15: 429–437.CrossRefGoogle Scholar
  60. [60]
    Vorbeck, C., H. Lenke, P. Fischer, and H. J. Knacknuss (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by aMycobacterium strain.J. Bacteriol. 176: 932–934.Google Scholar
  61. [61]
    Esteve-Núñez, A., A. Caballero, and J. L. Ramos (2001) Biological degradation of 2,4,6-trinitrotoluene.Microbiol. Mol. Biol. Rev. 65: 335–352.CrossRefGoogle Scholar
  62. [62]
    Zhang, X., E. R. Sullivan, and L. Y. Young (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium.Biodegradation 11: 117–124.CrossRefGoogle Scholar
  63. [63]
    Rieger, P.-G., V. Sinnwell, A. Preuss, W. Francke, and H.-J. Knackmuss (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation byRhodococcus erythropolis.J. Bacteriol. 181: 1189–1995.Google Scholar
  64. [64]
    Premuzic, E. T., M. S. Lin, M. Bohenek, and W. M. Zhou (1999) Bioconversion reactions in asphaltenes and heavy crude oils.Energy Fuels 13: 297–304.CrossRefGoogle Scholar
  65. [65]
    Heiss, G., K. W. Hofmann, N. Trachtmann, D. M. Walters, P. Rouvière, and H.-J. Knackmuss (2002) npd gene functions ofRhodococcus erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation.Microbiology 148: 799–806.Google Scholar
  66. [66]
    Miller, R. M. and R. Bartha (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes.Appl. Environ. Microbiol. 55: 269–274.Google Scholar
  67. [67]
    Kropp, K. G., I. A. Davidova, and J. M. Suflita (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture.Appl. Environ. Microbiol. 66: 5393–5398.CrossRefGoogle Scholar
  68. [68]
    Spormann, A. M. and F. Widdel (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria.Biodegradation 11: 85–105.CrossRefGoogle Scholar
  69. [69]
    Widdel, F. and R. Rabus (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons.Curr. Opin. Biotechnol. 12: 259–276.CrossRefGoogle Scholar
  70. [70]
    Hamer, G. and N. Al-Awadhi (2000) Biotechnological applications in the oil industry.Acta Biotechnol. 20: 335–350.CrossRefGoogle Scholar
  71. [71]
    Lazar, I., A. Voicu, C. Nicolescu, D. Mucenica, S. Dobrota, I. G. Petrisor, M. Stefanescu, and L. Sandulescu (1999) The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition.J. Pet. Sci. Eng. 22: 161–169.CrossRefGoogle Scholar
  72. [72]
    Rocha, C. A., D. Gonzalez, M. L. Iturralde, U. L. Lacoa, and F. A. Morales (2000) Production of oily emulsions mediated by a microbial tenso-active agent.US Patent 6,060,287.Google Scholar
  73. [73]
    Iqbal, S., Z. M. Khalid, and K. A. Malik (1995) Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant ofPseudomonas aeruginosa.Lett. Appl. Microbiol. 21: 176–179.CrossRefGoogle Scholar
  74. [74]
    Venkateswaran, K., T. Hoaki, M. Kato, and T. Maruyama (1995) Microbial degradation of resins fractionated from Arabian light crude oil.Can. J. Microbiol. 41: 418–424.CrossRefGoogle Scholar
  75. [75]
    Barathi, S. and N. Vasudevan (2001) Utilization of petroleum hydrocarbons byPseudomonas fluorescens isolated from a petroleum-contaminated soil.Environ. Int. 26: 413–416.CrossRefGoogle Scholar
  76. [76]
    Abalos, A., M. Vinas, J. Sabate, M. A. Manresa, and A. M. Solanas (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced byPseudomonas aeruginosa AT10.Biodegradation 15: 249–260.CrossRefGoogle Scholar
  77. [77]
    Cairns, W. L., D. G. Cooper, J. E. Zajic, J. M. Wood, and N. Kosaric (1982) Characterization ofNocardia amarea as a potent biological coalescing agent of water-oil emulsions.Appl. Environ. Microbiol. 43: 362–366.Google Scholar
  78. [78]
    Das, M. (2001) Characterization of de-emulsification capabilities of aMicrococcus species.Bioresour. Technol. 79: 15–22.CrossRefGoogle Scholar
  79. [79]
    Nadarajah, N., A. Singh, and O. P. Ward (2002) Deemulsification of petroleum oil emulsion by a mixed bacterial culture.Process Biochem. 37: 1133–1141.CrossRefGoogle Scholar
  80. [80]
    Park, S. H., J.-H. Lee, S.-H. Ko, D.-S. Lee, and H. K. Lee (2000) Demulsification of oil-in-water emulsions by aerial spores of aStreptomyces sp.Biotechnol. Lett. 22: 1389–1395.CrossRefGoogle Scholar
  81. [81]
    Herman, D. C., P. M. Fedorak, M. D. MacKinnon, and J. W. Costerton (1994) Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings.Can. J. Microbiol. 40: 467–477.CrossRefGoogle Scholar
  82. [82]
    Cooper, D. G. (1982)Biosurfactants and Enhanced Oil Recovery. pp. 112–114. Proceedings of Int. Conf. Microbial Enhanced Oil Recovery, May 16–21, Afton, UK.Google Scholar
  83. [83]
    Bryant, R. S. and J. Douglas (1987) Evaluation of microbial systems in porous media for enhanced oil recovery, paper SPE 16284, SPE Int. Symp. on Oilfied Chemistry, Feb. 4–6, San Antonio.Google Scholar
  84. [84]
    Hayes, M. E., K. R. Hrebenar, P. L. Murphy, L. E. Futch, jr., J. F. Deal III, and P. L. Bolden, Jr. (1990) Bioemulsifier-stabilized hydrocarbosols.US Patent 4,943,390.Google Scholar
  85. [85]
    Ayala, M., R. Tinoco, V. Hernández, P. Bremuntz, and R. Vazquez-Duhalt (1998) Biocatalyticoxidation of fuel as an alternative to biodesulfurization.Fuel Process Technol. 57: 101–111.CrossRefGoogle Scholar
  86. [86]
    Ayala, M., N. R. Robledo, A. Lopez-Munguia, and R. Vazquez-Duhalt (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel.Environ. Sci. Technol. 34: 2804–2809.CrossRefGoogle Scholar
  87. [87]
    Huber, H. and K. O. Stetter (1998) Hyperthermophiles and their possible potential in biotechnology.J. Biotechnol. 64: 39–52.CrossRefGoogle Scholar
  88. [88]
    Ward, O. P. and M. Moo-Young (1988) Thermostable enzymes.Biotechnol. Adv. 6: 39–69.CrossRefGoogle Scholar
  89. [89]
    Klein, J., D. E. A. Catcheside, R. Fakoussa, L. Gazso, W. Fritsche, M. Hoefer, F. Laborda, I. Margarit, H. J. Rehm, M. Reich-Walber, W. Sand, S. Schacht, H. Schmiers, L., Setti, and A. Teinbuechel (1999) Biological processing of fuels.Appl. Microbiol. Biotechnol. 52: 2–15.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  1. 1.Unidad de Biotecnologia del Petróleo, Centro de BiotecnologiaFundación Instituto de Estudios Avanzados (IDEA)CaracasVenezuela

Personalised recommendations