Folia Microbiologica

, 52:159 | Cite as

Inflammation — a lifelong companion

Attempt at a non-analytical holistic view
  • M. Ferenčík
  • V. Štvrtinová
  • I. Hulín
  • M. Novák


Inflammation is a key component of the immune system. It has important functions in both defense and pathophysiological events maintaining the dynamic homeostasis of a host organism including its tissues, organs and individual cells. On the cellular level it is controlled by more than 400 currently known genes. Their polymorphisms and environmental conditions give rise to different genotypes in human population. Pro-inflammatory genotype, which dominates in the present population, may be advantageous in childhood but not in elderly people because it is characterized by an increased vulnerability to, and intensity of, inflammatory reactions. These reactions may be the possible reasons of chronic inflammatory diseases, especially in old age. Better understanding of complex molecular and cellular inflammatory mechanisms is indispensable for detailed knowledge of pathogenesis of many diseases, their prevention and directed drug therapy. Here we summarize the basic current knowledge on these mechanisms.


Familial Mediterranean Fever Pyrin Periodic Fever Syndrome Systemic Inflammatory Reaction Lethal Systemic Inflammation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



β amyloid peptide


Alzheimer’s disease


apoptosis-proteinase activating factor


apoptotic-associatedspeck-like protein containing acaspase recruitment domain


baculovirus inhibitor of apoptosis repeat


class II transactivator


caspase-activating and recruitment domain


CARD,transcriptionenhancer,R (purine)-binding,pyrin,lots ofleucinerepeat




C-reactive protein


damage-associated molecular patterns


death domain


endoplasmic reticulum


familial Mediterranean fever


high-density lipoprotein (level)


hyperimmunoglobulinemia D with periodic fever syndrome


histocompatibility locus antigen (molecules)


high-mobility group box 1


heat shock protein


enzyme converting IL-1










low-density lipoprotein (level)




leucine-rich repeat


mucosal-associated lymphoid tissue


major histocompatibility complex


mannose receptor

NACHT (domain)

named after NAIP, CIITA, HET-E and TP1


neuronal apoptosis inhibitory protein


NACHT-, LRR- and PYD-containing protein(s)


nucleotide binding domain


nuclear factor κB


nucleotide-binding domain and leucine-rich repeat containing family


nucleotide-oligomerization domain


pathogen-associated molecular pattern


pattern-recognition receptor


pyrin domain


host resistance genes


receptor-interacting protein


scavenger receptor


transforming growth factor β




Toll-like receptor


tumor necrosis factor


telomerase-associated protein


TNF receptor-associated periodic syndrome


triggeringreceptorexpressed onmyeloid cells


TIR domain containing adaptor interacting with TLR(s)


vascular-associated lymphoid tissue

WD-40 repeat

Trp-Asp forty-amino-acid repeat


  1. Akira S., Uematsu S., Takeuchi O.: Pathogen recognition and innate immunity.Cell 124, 783–801 (2006).PubMedCrossRefGoogle Scholar
  2. Akyiama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G.M., Cooper N.R., Eikelenboom P., Emmerling M., Fiebich B.L., Finch C.E., Frautschy S., Griffin W.S.T., Hampel H., Hull M., Landreth G., Lih-Fen Lue, Mark R., Mackenzie I.R., McGeer P.L., O’Banion M.K., Pachter J., Pasinetti G., Plata-Salaman C., Rogers J., Rydel R., Yong Shen, Streit W., Strohmeyer R., Tooyoma I., Van Muiswinkel F.L., Veerhuis R., Walker D., Webster S., Wegrzyniak B., Wenk G., Wyss-Coray T.: Inflammation and Alzheimer’s disease.Neurobiol.Aging 21, 383–421 (2000).CrossRefGoogle Scholar
  3. Andreotti F., Porto I., Crea F., Maseri A.: Inflammatory gene polymorphisms and ischemic heart disease: review of population association studies.Heart 87, 107–112 (2002).PubMedCrossRefGoogle Scholar
  4. Arendt T.: Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization.Neuroscience 102, 723–765 (2001).PubMedCrossRefGoogle Scholar
  5. Bouchon A., Dietrich J., Colonna M.: Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes.J.Immunol. 164, 4991–4995 (2000).PubMedGoogle Scholar
  6. Bruunsgaard H., Pedersen M., Pedersen B.K.: Aging and proinflammatory cytokines.Curr.Opin.Hematol. 131, 131–136 (2001).CrossRefGoogle Scholar
  7. Bruunsgaard H., Ladelund S., Pedersen A.N., Schroll M., Jorgensen T., Petersen B.K.: Predicting death from necrosis factor-α and interleukin-6 in 80-year-old people.Clin.Exp.Immunol. 132, 24–31 (2003).PubMedCrossRefGoogle Scholar
  8. Calle E.E., Thun M.J., Petrelli J.M., Rodriguez C., Heath C.W. Jr.: Body-mass index and mortality in a prospective cohort of US adults.N.Engl.J.Med. 341, 1097–1105 (1999).PubMedCrossRefGoogle Scholar
  9. Carneiro L.A.M., Travassos L.H., Philpott D.J.: Innate immune recognition of microbes through Nod1 and Nod2: implications for disease.Microbes Infection 6, 609–616 (2004).CrossRefGoogle Scholar
  10. Caruso C., Lio D., Cavallone L., Franceschi C.: Ageing, longevity, inflammation, and cancer.Ann.N.Y.Acad.Sci. 1028, 1–13 (2004).PubMedCrossRefGoogle Scholar
  11. Chamaillard M., Girardin S.E., Viala J., Philpott D.J.: Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation.Cell Microbiol. 5, 581–592 (2003).PubMedCrossRefGoogle Scholar
  12. Cheng C., de Crom R., van Haperen R., Helderman F., Gourabi B.M., van Damme L.C.A., Kirschbaum S.W., Slager C.J., van der Steen A.F.W., Krams R.: The role of shear stress in atherosclerosis — action through gene expression and inflammation.Cell Biochem.Biophys. 41, 279–295 (2004).PubMedCrossRefGoogle Scholar
  13. Curran J.E., Jowett J.B.M., Elliot K.S., Gao Y., Gluschenko K., Wang J., Azim D.M.A., Cai G., Mahaney M.C., Comuzzie A.G., Dyer T.D., Ealder K.R., Zimmet P., MacCluer J.W., Collier G.R., Kissebah A.H., Blangero J.: Genetic variation in selenoprotein S influences inflammatory response.Nature Genet. 37, 1234–1241 (2005).PubMedCrossRefGoogle Scholar
  14. Dandona P., Aljada A., Bandyopadhyay A.: Inflammation: the link between insulin resistance, obesity and diabetes.Trends Immunol. 25, 4–7 (2004).PubMedCrossRefGoogle Scholar
  15. Das U.: Metabolic syndrome X: an inflammatory condition?Curr.Hypertens.Rep. 6, 66–73 (2004).PubMedCrossRefGoogle Scholar
  16. Erlinger T.P., Platz E.A., Rifai N., Helzlsouer K.J.: C-Reactive protein and the risk of incident colorectal cancer.AMA 291, 585–590 (2004).Google Scholar
  17. Ferenčík M., Ebringer L.: Modulatory effect of selenium and zinc on the immune system.Folia Microbiol. 48, 417–426 (2003).CrossRefGoogle Scholar
  18. Ferenčík M., Novák M., Rovenský J., Rybár I.: Alzheimer’s disease, inflammation and non-steroidal antiinflammatory drugs.Bratislava Med.J. 102, 123–132 (2001).Google Scholar
  19. Ferenčík M., Štvrtinová V., Hulín I.: Defects in regulation of local immune responses resulting in atherosclerosis.Clin.Develop. Immunol. 12, 225–234 (2005).CrossRefGoogle Scholar
  20. Franceschi C., Bonafe M., Valensin S., Olivieri F., De Luca M., Ottavian E., De Benedictis G.: Inflamm-aging. An evolutionary perspective on immunosenescence.Ann.N.Y.Acad.Sci. 908, 208–218 (2000).PubMedGoogle Scholar
  21. Frostegard J.: Autoimmunity, oxidized LDL and cardiovascular disease.Autoimm.Rev. 1, 233–237 (2002).CrossRefGoogle Scholar
  22. Gordon S.: Pattern recognition receptors.Cell 111, 927–930 (2002).PubMedCrossRefGoogle Scholar
  23. Graves D.R., Channon K.M.: Inflammation and immune responses in atherosclerosis.Trends Immunol. 25, 535–541 (2002).CrossRefGoogle Scholar
  24. Greiwe J.S., Cheng B., Rubin D.C., Yarasheski K.E., Semenkovich C.F.: Resistance exercise decreases skeletal muscle tumor necrosis factor α in frail elderly humans.FASEB J. 15, 475–482 (2001).PubMedCrossRefGoogle Scholar
  25. Han J., Ulevitch R.J.: Limiting inflammatory responses during activation of innate immunity.Nature Immunol. 6, 1182–1189 (2005).CrossRefGoogle Scholar
  26. Hargreaves D.C., Medzhitov R.: Innate sensors of microbial infection.J.Clin.Immunol 25, 503–510 (2005).PubMedCrossRefGoogle Scholar
  27. Harris H.F., Andersson U.: Mini-review: the nuclear HMGB1 as a proinflammatory mediator.Eur.J.Immunol. 34, 1503–1512 (2004).CrossRefGoogle Scholar
  28. Harris T.B., Ferrucci T., Tracy R.P., Corti M.C., Wacholder S., Ettinger W.H. Jr.,Heimovitz H., Cohen H.J., Wallace R.: Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly.Am.J.Med. 106, 506–512 (1999).PubMedCrossRefGoogle Scholar
  29. Henson P.M.: Dampening inflammation.Nature Immunol. 6, 1179–1181 (2005).CrossRefGoogle Scholar
  30. Herre J., Gordon S., Brown G.D.: Dectin-1 and its role in the recognition of β-glucans by macrophages.Molec.Immunol. 40, 869–876 (2004).CrossRefGoogle Scholar
  31. Hussain S.P., Hofseth L.J., Harris C.C.: Radical causes of cancer.Nature Rev.Cancer 3, 276–285 (2003).CrossRefGoogle Scholar
  32. Kereiakes D.J., Willerson J.T.: Metabolic syndrome epidemic.Circulation 108, 1552–1553 (2003).PubMedCrossRefGoogle Scholar
  33. Konsman J.P., Parnet P., Dantzer R.: Cytokine-induced sickness behavior: mechanisms and implications.Trends Neurosci. 25, 154–159 (2002).PubMedCrossRefGoogle Scholar
  34. Krabbe K.S., Pedersen M., Bruunsgaard H.: Inflammatory mediators in the elderly.Exp.Gerontol. 39, 687–699(2004).PubMedCrossRefGoogle Scholar
  35. Lazar M.A.: How obesity causes diabetes: not a tall tale.Science 307, 373–375 (2005).PubMedCrossRefGoogle Scholar
  36. Lee Y.B., Nagai A., Kim S.U.: Cytokines, chemokines, and cytokine receptors in human microglia.J.Neurosci.Res. 69, 94–103 (2002).PubMedCrossRefGoogle Scholar
  37. Libby P.: Inflammation in atherosclerosis.Nature 420, 868–874 (2002).PubMedCrossRefGoogle Scholar
  38. Libby P., Ridger P.M.: Inflammation and atherosclerosis: role of C-reactive protein in risk assesment.Am.J.Med. 116 (Suppl. 1), 9–16 (2004).CrossRefGoogle Scholar
  39. Licastro F.: Genomic and immune molecules: early detection of cognitive decline and new therapeutic interventions.Expert.Rev. Neurotherap. 2, 639–645 (2002).CrossRefGoogle Scholar
  40. Licastro F., Pedrini S., Caputo L., Annoni G., Davis L.J., Ferri C., Casadei V., Grimaldi L.M.: Increased plasma level of interleukin-1, interleukin-6 and α-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation signals or signals from the brain?J.Neuroimmunol. 103, 97–102 (2000).PubMedCrossRefGoogle Scholar
  41. Licastro F., Grimaldi L.M., Bonafe M., Martina C., Olivieri F.: Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain.Neurobiol.Aging 24, 921–926 (2003).PubMedCrossRefGoogle Scholar
  42. Licastro F., Candore G., Lio D., Porcellini E., Colonna-Romano G., Franceshi C., Caruso C.: Innate immunity and inflammation in ageing: a key for understanding age-related diseases.Immunity Ageing 2, 8–23 (2005).PubMedCrossRefGoogle Scholar
  43. Lotze M.T., Tracey K.J.: High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal.Nature Rev. 5, 331–342 (2005).CrossRefGoogle Scholar
  44. Maeda S.: Nod2 mutation in Crohn’s disease potentiates NF-κB activity and IL-1β processing.Science 307, 734–738 (2004).CrossRefGoogle Scholar
  45. Martinon F., Burns K., Tschopp J.: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1β.Mol.Cell 10, 417–426 (2002).PubMedCrossRefGoogle Scholar
  46. Mc Dermott M.F., Aksentijevich I.: The antiinflammatory syndromes.Curr.Opin.Allergy Clin.Immunol. 2, 511–516 (2002).CrossRefGoogle Scholar
  47. Mc Geer E.G., Mc Geer P.L.: Innate immunity in Alzheimer’s disease.Molec.Interventions 1, 22–29 (2001a).Google Scholar
  48. Mc Geer P.L., Mc Geer E.G.: Polymorphisms in inflammatory genes and the risk of Alzheimer’s disease.Arch.Neurol. 58, 1790–1792 (2001b).CrossRefGoogle Scholar
  49. Mc Geer E.G., Klegeris A., Mc Geer P.L.: Inflammation, the complement system and the disease of aging.Neurobiol.Aging 26, 94–97 (2005).CrossRefGoogle Scholar
  50. Medzhitov R., Janeway C. Jr.: Innate immunity.N.Engl.J.Med. 343, 338–344 (2000).PubMedCrossRefGoogle Scholar
  51. Novák M.: Neuroimmunolgy of Alzheimer’ disease. (In Slovak)Bratisl.Lek.Listy 98, 303–314 (1997).PubMedGoogle Scholar
  52. Padah S.: Periodic fever syndromes.Pediat.Clin.N.Am. 52, 577–609 (2005).CrossRefGoogle Scholar
  53. Pahl H.L., Baeuerle P.A.: The ER-overload response: activation of NF-κB.Trends Biochem.Sci. 22, 63–67 (1997).PubMedCrossRefGoogle Scholar
  54. Pearson T.A., Mensah G.A., Alexander R.W., Anderson J.K.L., Cannon R.O., Cariqui M., Fadl Y.Y., Fortmann S.P., Hong Y., Myers G.L., Rifai N., Smith S.C., Taubert K., Tracy R.P., Vinicor F.: Markers of inflammation and cardiovascular disease: application to clinical and public health practice — a statement for health care professionals from theCenter for Disease Control and Prevention and theAmerican Hearth Association.Circulation 107, 499–511 (2003).PubMedCrossRefGoogle Scholar
  55. Perry V.H.: The influence of systemic inflammation on inflammation in the brains, implications for chronic neurodegenerative diseases.Brain Behav.Immun. 18, 407–413 (2004).PubMedCrossRefGoogle Scholar
  56. Plackett T.P., Boehmer E.O., Faunce D.E., Kovacs E.J.: Ageing and innate immune cells.J.Leukoc.Biol. 76, 1–9 (2004).CrossRefGoogle Scholar
  57. Pockley A.G., Wu R., Lemme C., Kiessling R., de Faire V., Frostegard J.: Circulating heat shock protein 60 is associated with early cardiovascular disease.Hypertension 36, 303–307 (2000).PubMedGoogle Scholar
  58. Renshaw M., Rockwell J., Engleman C., Gewirtz A., Katz J., Sambhara S.: Cutting edge: impaired Toll-like receptor expression and function in aging.J.Immunol 169, 4697–4701 (2002).PubMedGoogle Scholar
  59. Ridger P.M., Morrow D.A.: C-Reactive protein, inflammation, and coronary risk.Cardiol.Clin. 21, 315–325 (2003).CrossRefGoogle Scholar
  60. Ross R.: Atherosclerosis: an inflammatory disease.N.Engl.J.Med. 340, 115–126 (1999).PubMedCrossRefGoogle Scholar
  61. Roubenoff R.: Catabolism of ageing: is it an inflammatory process?Curr.Opin.Clin.Nutr.Metab.Care 6, 295–299 (2003).PubMedCrossRefGoogle Scholar
  62. Rudin E., Barzilai N.: Inflammatory peptides derived from adipose tissue.Immunol.Ageing 2, 1–5 (2005).CrossRefGoogle Scholar
  63. Sandor F., Buc M.: Toll-like receptors. I. Structure, function and their ligands.Folia Biol. 51, 148–156 (2005).Google Scholar
  64. Selkoe D.J.: Alzheimer’s disease: genes, proteins, and therapy.Physiol.Rev. 81, 741–766 (2001).PubMedGoogle Scholar
  65. Senn J., Klover P., Nowak I., Mooney R.: Interleukin-6 induces cellular insulin resistance in hepatocytes.Diabetes 51, 3391–3399 (2002).PubMedCrossRefGoogle Scholar
  66. Stehlik C., Reed J.C.: The PYRIN connection: novel players in innate immunity and inflammation.J.Exp.Med. 200, 551–558 (2004).PubMedCrossRefGoogle Scholar
  67. Stephens J.W., Humphries S.E.: The molecular genetics of cardiovascular disease: clinical implications.J.Intern.Med. 253, 120–127 (2003).PubMedCrossRefGoogle Scholar
  68. Stojanov S., Kastner D.L.: Familial autoinflammatory diseases: genetics, pathogenesis and treatment.Curr.Opin.Rheumatol. 17, 586–599 (2005).PubMedCrossRefGoogle Scholar
  69. Strober W., Murray P.J., Kitani A., Watanabe T.: Signaling pathways and molecular interactions of NOD1 and NOD2.Nature Rev.Immunol. 6, 9–20 (2006).CrossRefGoogle Scholar
  70. Szlosarek P.W., Balkwill F.R.: Tumor necrosis factor α: a potential target for the therapy of solid tumors.Lancet Oncol. 4, 565–573 (2003).PubMedCrossRefGoogle Scholar
  71. Takeda K., Akira S.: Toll-like receptors in innate immunity.Intern.Immunol. 17, 1–14 (2005).CrossRefGoogle Scholar
  72. Takeda K., Kaisho T., Akira S.: Toll-like receptors.Ann.Rev.Immunol. 21, 335–376 (2003).CrossRefGoogle Scholar
  73. Thun M.J., Kenley S.J., Gansler T.: Inflammation and cancer: an epidemiological perspective.Novartis Found.Symp. 256, 2–21 (2004).Google Scholar
  74. Town T., Nikolic V., Tan J.: The microglial “activation” continuum: from innate to adaptive responses.J.Neuroinfl. 2, 24–32 (2005).CrossRefGoogle Scholar
  75. Tschopp J., Martinon F., Burns K.: NALPS: a novel protein family involved in inflammation.Nature Rev.Molec.Cell Biol. 4, 95–104 (2003).CrossRefGoogle Scholar
  76. Tuppo E.E., Arias H.R.: The role of inflammation in Alzheimer’s disease.Internat.J.Biochem.Cell Biol. 73, 289–305 (2005).CrossRefGoogle Scholar
  77. Van Cruchten S., Van den Broeck W.: Morphological and biochemical aspects of apoptosis, oncosis and necrosis.Anat.Histol. Embryol. 31, 214–223 (2002).PubMedCrossRefGoogle Scholar
  78. Waltner-Romen M., Falkensammer G., Rabl W., Wick G.: A previously unrecognized site of local accumulation of mononuclear cells: the vascular-associated lymphoid tissue.J.Histochem.Cytochem. 46, 1347–1350 (1998).PubMedGoogle Scholar
  79. Wang H., Yang H., Czura C.J., Sama A.E., Tracey K.J.: HMGB1 as a late mediator of lethal systemic inflammation.Am.J.Respir. Crit.Care Med. 164, 1768–1773 (2001).PubMedGoogle Scholar
  80. Wick G., Perschinka H., Millonig G.: Atherosclerosis as an autoimmune disease: an update.Trends Immunol. 22, 665–669 (2001).PubMedCrossRefGoogle Scholar
  81. Wick G., Knoflach M., Xu Q.: Autoimmune and inflammatory mechanisms in atherosclerosis.Ann.Rev.Immunol. 22, 361–403 (2004).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  • M. Ferenčík
    • 1
    • 2
  • V. Štvrtinová
    • 1
  • I. Hulín
    • 1
  • M. Novák
    • 2
  1. 1.Faculty of MedicineComenius UniversityBratislavaSlovakia
  2. 2.Institute of NeuroimmunologySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations