Advertisement

Folia Microbiologica

, Volume 52, Issue 1, pp 39–43 | Cite as

Effect of subinhibitory concentration of some established and experimental antifungal compounds on the germ tube formation inCandida albicans

  • L. A. Vale-Silva
  • V. Buchta
  • E. Valentová
Article

Abstract

The influence of subinhibitory concentrations of six established and 19 newly synthesized antifungal compounds on the dimorphic transition of threeC. albicans strains was evaluated in the filamentation-inducing medium. Amphotericin B was found to produce almost complete inhibition in the germination at a concentration of 1/10 of the corresponding MIC and partial inhibition at a concentration as low as MIC/50. Flucytosine and four azole derivatives were proven ineffective. From the newly synthesized drugs, the incrustoporin derivative LNO6-22, two phenylguanidine derivatives (PG15, PG45), and four thiosalicylanilide derivatives, in particular, showed results comparable to those of amphotericin B, with a high inhibition of germ tube formation at concentrations of MIC/10. In general, concentrations of MIC/50 had no visible effect.

Keywords

Fluconazole Candida Albicans Germ Tube Antifungal Compound Flucytosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Y-M

yeast-mycelium

subIC

subinhibitory concentration(s)

MIC

minimum inhibitory concentration(s)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bialková A., Šubík J.: Biology of the pathogenic yeastCandida glabrata.Folia Microbiol.51, 3–20 (2006).CrossRefGoogle Scholar
  2. Braunerová G., Buchta V., Silva L., Kuneš J., Palát K. Jr.: Synthesis andin vitro antifungal activity of 4-substituted phenylguanidinium salts.Il Farmaco59, 443–450 (2004).PubMedCrossRefGoogle Scholar
  3. Buchta V., Pour M., Kubanová P., Silva L., Votruba I., Vopršálová M., Schiller R., Fáková H., Špulák M.:In vitro activities of 3-(halogenated phenyl)-5-acyloxymethyl-2,5-dihydrofuran-2-ones against common and emerging yeasts and molds.Antimicrob.Agents Chemother.48, 873–878 (2004).PubMedCrossRefGoogle Scholar
  4. Calderone R.A., Fonzi W.A.: Virulence factors ofCandida albicans.Trends Microbiol.9, 327–335 (2001).PubMedCrossRefGoogle Scholar
  5. Consolaro M.E., Albertoni T.A., Svidzinski A.E., Peralta R.M., Svidzinski T.I.: Vulvovaginal candidiasis is associated with the production of germ tubes byCandida albicans.Mycopathologia159, 501–507 (2005).PubMedCrossRefGoogle Scholar
  6. Csank C., Schröppel K., Leberer E., Harcus D., Mohamed O., Meloche S., Thomas D.Y., Whiteway M.: Roles of theCandida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis.Infect.Immun.66, 2713–2721 (1998).PubMedGoogle Scholar
  7. Doležal M., Hartl J., Miletín M., Buchta V., Odlerová Ž.: Synthesis, tuberculostatic and antimycotic properties of substituted pyrazinethioamides.Proc. Symp. Heterocyclic Compounds: Synthesis, Structure and Biological Activity, Hradec Králové (Czechia) 1995;Folia Pharm.Univ.Carol.18, 148–149 (1995).Google Scholar
  8. Doležal M., Opačič N., Pálek L., Kuneš J., Buchta V.: Synthesis and antifungal properties of 3-aminopyrazin-2,5-dinitrile derivatives. Abstr. Book 55th Congr. Chemical Societies, Košice (Slovakia) 2003); (In Czech)Chem.Listy97, 756 (2003).Google Scholar
  9. Dorko E., Pilipčinec E., Tkáčiková L’.: Fungal diseases of the respiratory tract.Folia Microbiol.47, 302–304 (2002).CrossRefGoogle Scholar
  10. Ellepola A.N., Samaranayake L.P.: The effect of limited exposure to antifungal agents on the germ tube formation of oralCandida albicans.J.Oral Pathol.Med.27, 213–219 (1998).PubMedGoogle Scholar
  11. Ellepola A.N., Samaranayake L.P.: The effect of brief exposure to sub-therapeutic concentrations of chlorhexidine gluconate on the germ tube formation of oralCandida albicans and its relationship to post-antifungal effect.Oral Dis.6, 166–171 (2000).PubMedGoogle Scholar
  12. Gow N.A.R., Brown A.J.P., Odds F.C.: Fungal morphogenesis and host invasion.Curr.Opin.Microbiol.5, 366–371 (2002).PubMedCrossRefGoogle Scholar
  13. Ha K.C., White T.C.: Effects of azole antifungal drugs on the transition from yeast cells to hyphae in susceptible and resistant isolates of the pathogenic yeastCandida albicans.Antimicrob.Agents Chemother.43, 763–768 (1999).PubMedGoogle Scholar
  14. Hoberg K.A., Cihlar R.L., Calderone R.A.: Inhibitory effect of cerulenin and sodium butyrate on germination ofCandida albicans.Antimicrob.Agents Chemother.24, 401–408 (1983).PubMedGoogle Scholar
  15. Krueger K.E., Ghosh A.K., Krom B.P., Cihlar R.L.: Deletion of the NOT4 gene impairs hyphal development and pathogenicity inCandida albicans.Microbiology150, 229–240 (2004).PubMedCrossRefGoogle Scholar
  16. Kubicová L., Šustr M., Sedlák M.: New method of the synthesis of thiosalicylanilides. (In Czech)Chem.Listy96, 940 (2002).Google Scholar
  17. Lewis R.E., Lo H.J., Raad I.I., Kontoyiannis D.P.: Lack of catheter infection by theefgl/efgl cphl/cphl double-null mutant, aCandida albicans strain that is defective in filamentous growth.Antimicrob.Agents Chemother.46, 1153–1155 (2002).PubMedCrossRefGoogle Scholar
  18. Lo H.J., Köhler J.R., Didomenico B., Loebenberg D., Cacciapuoti A., Fink G.R.: NonfilamentousC. albicans mutants are avirulent.Cell90, 939–949 (1997).PubMedCrossRefGoogle Scholar
  19. Marichal P., Gorrens J., Van Cutsem J., Van den Bossche H.: Culture media for the study of the effects of azole derivatives on germ tube formation and hyphal growth ofC. albicans.Mykosen29, 76–81 (1986).PubMedGoogle Scholar
  20. McLain N., Ascanio R., Baker C., Strohaver R.A., Dolan J.W.: Undecylenic acid inhibits morphogenesis ofCandida albicans.Antimicrob.Agents Chemother.44, 2873–2875 (2000).PubMedCrossRefGoogle Scholar
  21. Mitchell A.P.: Dimorphism and virulence inCandida albicans.Curr.Opin.Microbiol.1, 687–692 (1998).PubMedCrossRefGoogle Scholar
  22. Navarro-García F., Sánchez M., Nombela C., Pla J.: Virulence genes in the pathogenic yeastCandida albicans.FEMS Microbiol.Rev.25, 245–268 (2001).PubMedCrossRefGoogle Scholar
  23. NCCLS (National Committee for Clinical Laboratory Standards): Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard (NCCLS Document M27-A2). NCCLS, Wayne (USA) 2002.Google Scholar
  24. Nugent K.M., Couchot K.R.: Effects of sublethal concentrations of amphotericin B onCandida albicans.J.Infect.Dis.154, 665–669 (1986).PubMedGoogle Scholar
  25. Odds F.C.: Epidemiological shifts in opportunistic and nosocomialCandida infections: mycological aspects.Internat.J.Antimicrob.Agents6, 141–144 (1996).CrossRefGoogle Scholar
  26. Odds F.C., Cheesman S.L., Abbott A.B.: Antifungal effects of fluconazole (UK-49858), a new triazole antifungal,in vitro.J.Antimicrob.Chemother.18, 473–478 (1986a).PubMedCrossRefGoogle Scholar
  27. Odds F.C., Cockayne A., Hayward J., Abbott A.B.: Effects of imidazole- and triazole-derivative antifungal compounds on the growth and morphological development ofCandida albicans hyphae.J.Gen.Microbiol.131, 2581–2589 (1986b).Google Scholar
  28. Pour M., Špulák M., Buchta V., Kubanová P., Vopršalová M., Wsól V., Fáková H., Koudelka P., Pourová H., Schiller R.: 3-Phenyl-5-acyloxymethyl-2H,5H-furan-2-ones: synthesis and biological activity of a novel group of potential antifungal drugs.J.Med.Chem.44, 2701–2706 (2001).PubMedCrossRefGoogle Scholar
  29. Sánchez-Martínez C., Pérez-Martín J.: Dimorphism in fungal pathogens:Candida albicans andUstilago maydis — similar inputs, different outputs.Curr.Opin.Microbiol.4, 214–221 (2001).PubMedCrossRefGoogle Scholar
  30. Snydman D.R.: Shifting patterns in the epidemiology of nosocomialCandida infections.Chest123 (Suppl. 5), 500S-503S (2003).PubMedCrossRefGoogle Scholar
  31. Tomšíková A.: Causative agents of nosocomial mycoses.Folia Microbiol.47, 105–112 (2002).CrossRefGoogle Scholar
  32. Vytlačilová J., Šustr M., Chobot V., Kubicová L., Jahodář L., Vuorela P.: Toxicological evaluation of 2-hydroxy-N-phenylthiobenzamides byArtemia screening method.Chem.Inž.Ekol.11, 1239–1243 (2004).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  1. 1.Department of Biological and Medical Sciences, Faculty of PharmacyCharles UniversityHradec KrálovéCzechia
  2. 2.Department of Clinical MicrobiologyUniversity Hospital, Charles UniversityHradec KrálovéCzechia

Personalised recommendations