Advertisement

Folia Microbiologica

, 51:209 | Cite as

Conidiation ofTrichoderma atroviride isolate during submerged cultivation in a laboratory stirred-tank fermenter

  • L. Jakubíková
  • V. Farkaš
  • N. Kolarova
  • M. Nemcovič
Article

Abstract

Conditions for conidiation of a natural isolate ofTrichoderma atroviride during submerged cultivation in Erlenmeyer flasks and in a laboratory stirred-tank fermenter were optimized. From the simple sugars tested, cellobiose was the best substrate for conidia production while cellulose fines from paper mill waste proved to be a suitable cheap complex carbon source. Optimum temperature for conidiation was 24–26°C, and the required dissolved oxygen level was >40% saturation. After initial slight decrease during the 1st d after inoculation, the pH of the culture medium constantly increased throughout the sporulation period. Attempts to regulate the pH during fermentation did not improve the spore yields. The most intense formation of conidia took place between 2nd and 3rd d of growth and the overall volumetric productivity of conidia was 4.1–8.2 × 109 conidia per L/h.

Keywords

Cellobiose Submerged Fermentation Trichoderma Harzianum Trichoderma Species Conidium Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe H., Tamada T.: Association of beet necrotic yellow vein virus with isolates ofPolymyxa betae Keskin.Ann.Phytopathol.Soc.Japan 52, 235–247 (1986).Google Scholar
  2. Agosin E., Aguilera J.M.: Industrial production of active propagules ofTrichoderma for agricultural uses. pp. 205–227 in G.E. Harman, C.P. Kubicek (Eds):Trichoderma and Gliocladium. Enzymes, Biological Control and Commercial Applications. Taylor and Francis, London 1998.Google Scholar
  3. Betina V.: Photoinduced conidiation inTrichoderma viride.Internat.J.Microbiol. 2, 55–68 (1984).Google Scholar
  4. Betina V., Farkaš V.: Sporulation and light-induced development inTrichoderma spp., pp. 75–94 in G.E. Harman, C.P. Kubicek (Eds).Trichoderma and Ghocladium. Enzymes, Biological Control and Commercial Applications. Taylor and Francis, London 1998.Google Scholar
  5. Dahlberg K.R., Van Etten J.L.: Physiology and biochemistry of fungal sporulation.Ann.Rev.Phytopathol. 20, 281–301 (1982).CrossRefGoogle Scholar
  6. Dalla Santa H.S., Sousa N.J., Brand D., Dalla Santa O.R., Pandey A., Sobotka M., Paca J., Soccol C.R.: Conidia production ofBeauveria sp. by solid-state fermentation for biocontrol ofIlex paraguariensis caterpillars.Folia Microbiol. 49, 418–422 (2004).CrossRefGoogle Scholar
  7. Dubos B.: Fungal antagonism in aerial agrobiocenoses, pp. 107–135 in I. Chet (Ed.):Innovative Approaches to Plant Disease Control. Wiley, New York 1987.Google Scholar
  8. Gressel J., Bar-Lev S., Galun E.: Blue-light induced response in the absence of free oxygen.Plant Cell Physiol. 16, 367–370 (1975).Google Scholar
  9. Harman G.E., Jin X., Siasz T.E., Perruzzotti G., Leopold A.C., Taylor A.G.: Production of conidial biomass ofTrichoderma harziamum for biological control.Biol.Control 1, 23–28 (1991).CrossRefGoogle Scholar
  10. Harman G.E., Howel C.R., Viterbo A., Chet I., Lorito M.:Trichoderma species — opportunistic, avirulent plant symbionts.Nature Rev.Microbiol. 2, 43–56 (2004).CrossRefGoogle Scholar
  11. Jakubíková L., Šubíková V., Nemcovič M., Farkaš V.: Selection of natural isolates ofTrichoderma spp. for biocontrol ofPolymyxa betae as a vector of virus causing rhizomania in sugar beet.Biologia (Bratislava), in press (2006).Google Scholar
  12. Jin X., Taylor A.G., Harman G.E.: Development of media and automated liquid fermentation methods to produce dessication-tolerant propagules ofTrichoderma harzianum.Biol.Control 7, 267–274 (1996).CrossRefGoogle Scholar
  13. Kubicek C.P., Messner R., Gruber M., Mandels M., Kubicek-Pranz E.M.: Triggering of cellulase biosynthesis by cellulose inTrichoderma reesei. Involvement of a constitutive, sophorose-inducible, glucose-inhibited β-diglucoside permease.J.Biol.Chem. 268, 19364–19368 (1993).PubMedGoogle Scholar
  14. Kubicek C.P., Bisset J., Druzhinina I., Kulling-Gradiner C., Szakacs G.: Genetic and metabolic diversity ofTrichoderma: a case study of south-west Asian isolates.Fungal Gen.Biol. 38, 310–319 (2003).CrossRefGoogle Scholar
  15. Paravizas G.C.:Trichoderma andGliocladium: biology, ecology, and potential for biocontrol.Ann.Rev.Phytopathol. 23, 23–54 (1985).CrossRefGoogle Scholar
  16. Papavizas G.C., Dunn M.T., Lewis J.A., Beagle-Ristaino J.: Liquid fermentation technology for experimental production of biocontrol fungi.Phytopathology 74, 1171–1175 (1984).CrossRefGoogle Scholar
  17. Sulová Z., Hrmová M., Farkaš V.: Photostimulated oxygen uptake inTrichoderma viride.J.Gen.Microbiol. 136, 2287–2290 (1990).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  • L. Jakubíková
    • 1
  • V. Farkaš
    • 1
  • N. Kolarova
    • 1
  • M. Nemcovič
    • 1
  1. 1.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations