Skip to main content
Log in

Synergistic utilization of dichloroethylene as sole carbon source by bacterial consortia isolated from contaminated sites in Africa

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylenecontaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degradecis- andtrans-DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and 0.716 d−1 while the degradation rate constants ranged between 0.184 and 0.205 d−1, with 86.36–93.53 and 87.47–97.12% of the stoichiometric-expected chloride released during growth of the bacterial consortia, incis- andtrans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated byAchromobacter xylosoxidans and subsequently byAcinetobacter sp. andBacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fetzner, S. (1998) Bacterial dehalogenation.Appl. Microbiol. Biotechnol. 50: 633–657.

    Article  CAS  Google Scholar 

  2. Richard, A. M. and E. S. Hunter, 3rd. (1996) Quantitative structure-activity relationships for the developmental toxicity of haloacetic acids in mammalian whole embryo culture.Teratology 55: 352–360.

    Article  Google Scholar 

  3. Brown-Woodman, P. D. C., L. C. Hayes, F. Huq, C. Herlihy, K. Picker, and W. S. Webster (1998)In vitro assessment of the effect of halogenated hydrocarbons: chloroform. dichloromethane, and dibromoethane on embryonic development of rat.Teratology 57: 321–333.

    Article  CAS  Google Scholar 

  4. Akers, K. S., G. D. Sinks, and T. W. Schultz (1999) Structure-toxicity relationships for selected halogenated aliphatic chemicals.Environ. Toxicol. Pharmacol. 7: 33–39.

    Article  CAS  Google Scholar 

  5. Hileman, B. (1993) Concerns broaden over chlorine and chlorinated hydrocarbons.Chem. Eng. News 19: 11–20.

    Google Scholar 

  6. Gribble, G. W. (1994) The natural production of chlorinated compounds.Environ. Sci. Technol. 28: 310A-319A.

    Article  CAS  Google Scholar 

  7. Gribble, G. W. (1996) Naturally occurring organohalogen compounds: a comprehensive survey.Prog. Org. Nat. Prod. 68: 1–498.

    CAS  Google Scholar 

  8. Milde, G., M. Nerger, and R. Mergler (1998) Biological degradation of volatile chlorinated hydrocarbons in groundwater.Water Sci. Technol. 20: 67–73.

    Google Scholar 

  9. Squillace, P. J., M. J. Moran, W. W. Lapham, C. V. Price, R. M. Clawges, and J. S. Zogorski (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995.Environ. Sci. Technol. 35: 4176–4187.

    Article  Google Scholar 

  10. Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987) Transformations of halogenated aliphatic compounds.Environ. Sci. Technol. 21: 722–736.

    Article  CAS  Google Scholar 

  11. Tandoi, V., T. D. DiStefano, P. A. Bowser, J. M. Gossen, and S. H. Zinder (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture.Environ. Sci. Technol 28: 973–979.

    Article  CAS  Google Scholar 

  12. Maymó-Gatelle, X., V. Tandoi, J. M. Gossett, and S. H. Zinder (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachlore-ethene to vinyl chloride and ethane in the absence of methanogenesis and acetogenesis.Appl. Environ. Microbiol. 61: 3928–3933.

    Google Scholar 

  13. DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1992) Hydrogen as an electron donor for the dechlorination of tetrachloroethene by an anaerobic mixed culture.Appl. Environ. Microbiol. 58: 3622–3629.

    CAS  Google Scholar 

  14. Löffler, F. E., K. M. Ritalahti, and J. M. Tiedje (1997) Dechlorination of chloroethenes is inhibited by 2-bremoethanesulfonate in the absence of methanogens.Appl. Environ. Microbiol. 63: 4982–4985.

    Google Scholar 

  15. Rosner, B. M., P. L. McCarty, and A. M. Sporemann (1997)In vitro studies on reductive vinyl chloride dehale-genation by an anaerobic mixed culture.Appl. Environ. Microbiol. 63: 4139–4144.

    CAS  Google Scholar 

  16. Sharma, P. K. and P. L. McCarty (1996) Isolation and characterization of a facultatively acrobic bacterium that reductively dehalogenates tetrachloroethene tocis-1,2-dichloroethene.Appl. Environ. Microbiol. 62: 761–765.

    CAS  Google Scholar 

  17. De Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, A. J. B. Zehnder (1992) Complete biological reductive transformation of tetrachloroethylene to ethane.Appl. Environ. Microbiol. 58: 1996–2000.

    Google Scholar 

  18. Klier, N. J., R. J. West, and P. A. Donberg (1999) Aerobic biodegradation of dichloroethylenes in surface and subsurface soils.Chemosphere 38: 1175–1188.

    Article  CAS  Google Scholar 

  19. Bradley, P. M. and F. H. Chapelle (2000) Aerobic microbial mineralization of dichloroethene as sole carbon source.Environ. Sci. Technol. 34: 221–223.

    Article  CAS  Google Scholar 

  20. Coleman, N. V., T. E. Mattes, J. M. Gossett, and J. C. Spain (2002) Biodegradation ofcis-dichloroethene as the sole carbon source by a β-proteobacterium.Appl. Environ. Microbiol. 68: 2726–2730.

    Article  CAS  Google Scholar 

  21. Olaniran, A. O., D. Pillay, and B. Pillay (2004) Aerobic dechlorination ofcis- andtrans-dichloroethenes by some indigenous bacteria isolated from contaminated sites in Atrica.J. Environ. Sci. 16: 968–972.

    CAS  Google Scholar 

  22. Bouwer, E. J. (1994) Bioremediation of chlorinated solvents using alternate electron acceptors. pp. 149–175 In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, I. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.):Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  23. McCarty, P. L. and L. Semprini (1994) Groundwater treatment for chlorinated solvents. pp. 87–116. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas and C. H. Ward (eds.):Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  24. Vogel, T. M. (1994) Natural bioremediation of chlorinated solvents, pp. 201–225. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.):Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  25. Olaniran, A. O., A. I. Okoh, S. Ajisebutu, P. Golyshin, and G. O. Babalola (2002) The aerobic dechlorination activities of two bacterial species isolated from a refuse dumpsite in Nigeria.Int. Microbiol. 5: 21–24.

    Article  CAS  Google Scholar 

  26. Olaniran, A. O., D. Pillay, and B. Pillay (2004) Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities.Chemosphere 55: 27–33.

    Article  CAS  Google Scholar 

  27. Hartmans, S., A. Kaptein, J. Tramper, and J. A. M. de Bont (1992) Characterization of aMycobacterium sp. and aXanthomonas sp. for the removal of vinyl chloride and 1,2-dichloroethane from waste gases.Appl. Microbiol. Biotechnol. 37: 796–801.

    Article  CAS  Google Scholar 

  28. Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, D. Dymock, and W. G. Wade (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA.Appl. Environ. Microbiol. 64: 795–799.

    CAS  Google Scholar 

  29. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res. 25: 3389–3402.

    Article  CAS  Google Scholar 

  30. Seeley, H. W. and P. J. Vandemark (1981)Microbes in Action. A Laboratory Manual of Microbiology. 3rd ed., WH Freeman and Company, New York, NY, USA.

    Google Scholar 

  31. Gerhardt, P., R. Murray, R. Costilow, E. Nester, W. Wood, N. Krieg, and G. B. Phillips (1991)Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  32. Alexander, M. and K. M. Snow (1989) Reactions and movements of organic chemicals in soils. pp. 243–269. In: B. L. Sawhney and K. Brown (eds.): Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  33. LaGrega, M. D., P. L. Buckingham, and J. C. Evans (1994) Growth kinetics. pp. 581. In: B. J. Clark and J. M. Morris (eds.):Hazardous Waste Management. McGraw-Hill, Inc., New York, NY, USA.

    Google Scholar 

  34. Bergmann, J. G. and J. Sanik (1957) Determination of trace amounts of chlorine in naphtha.Anal. Chem. 29: 241–243.

    Article  CAS  Google Scholar 

  35. Ensign, S. A., M. R. Hyman, and D. J. Arp (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grownXanthobacter strain.Appl. Environ. Microbiol. 58: 3038–3046.

    CAS  Google Scholar 

  36. Van Hylckama Vlieg, J. E. T., W. de Koning, and D. B. Janssen (1996) Transformation kinetics of chlorinated ethenes byMethylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography.Appl. Environ. Microbiol. 62: 3304–3312.

    Google Scholar 

  37. Van Hylckama Vlieg, J. E. T., J. Kingma, A. J. van den Wijngaard, and D. B. Janssen (1998) A glutathioneS-transferase with activity towardscis-dichloroepoxyethane is involved in isoprene utilization byRhodococcus sp. strain AD45.Appl. Environ. Microbiol. 64: 2800–2805.

    Google Scholar 

  38. Koziollek, P., D. Bryniok, and H. J. Knackmuss (1999) Ethene as an auxiliary substrate for the cooxidation ofcis-dichloroethene and vinyl chloride.Arch. Microbiol. 172: 240–246.

    Article  CAS  Google Scholar 

  39. Dolfing, J., A. J. van den Wijngaard, and D. B. Janssen (1993) Microbiological aspects of the removal of chlorinated hydrocarbons from air.Biodegradation 4: 261–282.

    Article  CAS  Google Scholar 

  40. Anzai, Y., H. Kim, J. Y. Park, H. Wakabayashi, and H. Oyaizu (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence.Int. J. Syst. Evol. Microbiol. 50: 1563–1589.

    CAS  Google Scholar 

  41. Flynn, S. J., F. E. Loffler, and J. M. Tiedje (2000) Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination ofcis-DCE and VC.Environ. Sci. Technol. 34: 1056–1061.

    Article  CAS  Google Scholar 

  42. Sutherland, T. D., I. Horne, M. J. Lacey, R. L. Harcouri, R. J. Russell, and J. G. Oakeshott (2000) Enrichment of an endosulfan-degrading mixed bacterial culture.Appl. Environ. Microbiol. 66: 2822–2828.

    Article  CAS  Google Scholar 

  43. Park, H. S., S. J. Lim, Y. K. Chang, A. G. Livingstone, and H. S. Kim (1999) Degradation of chloronitrobenzenes by a coculture ofPseudomonas putida and aRhodococcus sp.Appl. Environ. Microbiol. 65: 1083–1091.

    CAS  Google Scholar 

  44. Alvey, S. and D. E. Crowley (1996) Survival and activity of an atrazine-mineralizing bacterial consortium in rhizesphere soil.Environ. Sci. Technol. 30: 1596–1603.

    Article  CAS  Google Scholar 

  45. Katsivela, E., D. Bonse, A. Krueger, C. Stroempl, A. Livingstone, and R. M. Wittich (1999) An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial waste water.Appl. Microbiol. Biotechnol. 52: 853–862.

    Article  CAS  Google Scholar 

  46. Ralebits, T. K., E. Senior, and H. W. van Verseveld (2002) Microbial aspects of atrazine degradation in natural environments.Biodegradation 13: 11–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademola O. Olaniran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olaniran, A.O., Mfumo, N.H., Pillay, D. et al. Synergistic utilization of dichloroethylene as sole carbon source by bacterial consortia isolated from contaminated sites in Africa. Biotechnol. Bioprocess Eng. 11, 205–210 (2006). https://doi.org/10.1007/BF02932031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932031

Keywords

Navigation