Biotechnology and Bioprocess Engineering

, Volume 11, Issue 3, pp 205–210 | Cite as

Synergistic utilization of dichloroethylene as sole carbon source by bacterial consortia isolated from contaminated sites in Africa

  • Ademola O. Olaniran
  • Nokukhanya H. Mfumo
  • Dorsamy Pillay
  • Balakrishna Pillay


The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylenecontaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degradecis- andtrans-DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and 0.716 d−1 while the degradation rate constants ranged between 0.184 and 0.205 d−1, with 86.36–93.53 and 87.47–97.12% of the stoichiometric-expected chloride released during growth of the bacterial consortia, incis- andtrans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated byAchromobacter xylosoxidans and subsequently byAcinetobacter sp. andBacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.


aerobic biodegradation consortium dichloroethylene synergism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fetzner, S. (1998) Bacterial dehalogenation.Appl. Microbiol. Biotechnol. 50: 633–657.CrossRefGoogle Scholar
  2. [2]
    Richard, A. M. and E. S. Hunter, 3rd. (1996) Quantitative structure-activity relationships for the developmental toxicity of haloacetic acids in mammalian whole embryo culture.Teratology 55: 352–360.CrossRefGoogle Scholar
  3. [3]
    Brown-Woodman, P. D. C., L. C. Hayes, F. Huq, C. Herlihy, K. Picker, and W. S. Webster (1998)In vitro assessment of the effect of halogenated hydrocarbons: chloroform. dichloromethane, and dibromoethane on embryonic development of rat.Teratology 57: 321–333.CrossRefGoogle Scholar
  4. [4]
    Akers, K. S., G. D. Sinks, and T. W. Schultz (1999) Structure-toxicity relationships for selected halogenated aliphatic chemicals.Environ. Toxicol. Pharmacol. 7: 33–39.CrossRefGoogle Scholar
  5. [5]
    Hileman, B. (1993) Concerns broaden over chlorine and chlorinated hydrocarbons.Chem. Eng. News 19: 11–20.Google Scholar
  6. [6]
    Gribble, G. W. (1994) The natural production of chlorinated compounds.Environ. Sci. Technol. 28: 310A-319A.CrossRefGoogle Scholar
  7. [7]
    Gribble, G. W. (1996) Naturally occurring organohalogen compounds: a comprehensive survey.Prog. Org. Nat. Prod. 68: 1–498.Google Scholar
  8. [8]
    Milde, G., M. Nerger, and R. Mergler (1998) Biological degradation of volatile chlorinated hydrocarbons in groundwater.Water Sci. Technol. 20: 67–73.Google Scholar
  9. [9]
    Squillace, P. J., M. J. Moran, W. W. Lapham, C. V. Price, R. M. Clawges, and J. S. Zogorski (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995.Environ. Sci. Technol. 35: 4176–4187.CrossRefGoogle Scholar
  10. [10]
    Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987) Transformations of halogenated aliphatic compounds.Environ. Sci. Technol. 21: 722–736.CrossRefGoogle Scholar
  11. [11]
    Tandoi, V., T. D. DiStefano, P. A. Bowser, J. M. Gossen, and S. H. Zinder (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture.Environ. Sci. Technol 28: 973–979.CrossRefGoogle Scholar
  12. [12]
    Maymó-Gatelle, X., V. Tandoi, J. M. Gossett, and S. H. Zinder (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachlore-ethene to vinyl chloride and ethane in the absence of methanogenesis and acetogenesis.Appl. Environ. Microbiol. 61: 3928–3933.Google Scholar
  13. [13]
    DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1992) Hydrogen as an electron donor for the dechlorination of tetrachloroethene by an anaerobic mixed culture.Appl. Environ. Microbiol. 58: 3622–3629.Google Scholar
  14. [14]
    Löffler, F. E., K. M. Ritalahti, and J. M. Tiedje (1997) Dechlorination of chloroethenes is inhibited by 2-bremoethanesulfonate in the absence of methanogens.Appl. Environ. Microbiol. 63: 4982–4985.Google Scholar
  15. [15]
    Rosner, B. M., P. L. McCarty, and A. M. Sporemann (1997)In vitro studies on reductive vinyl chloride dehale-genation by an anaerobic mixed culture.Appl. Environ. Microbiol. 63: 4139–4144.Google Scholar
  16. [16]
    Sharma, P. K. and P. L. McCarty (1996) Isolation and characterization of a facultatively acrobic bacterium that reductively dehalogenates tetrachloroethene tocis-1,2-dichloroethene.Appl. Environ. Microbiol. 62: 761–765.Google Scholar
  17. [17]
    De Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, A. J. B. Zehnder (1992) Complete biological reductive transformation of tetrachloroethylene to ethane.Appl. Environ. Microbiol. 58: 1996–2000.Google Scholar
  18. [18]
    Klier, N. J., R. J. West, and P. A. Donberg (1999) Aerobic biodegradation of dichloroethylenes in surface and subsurface soils.Chemosphere 38: 1175–1188.CrossRefGoogle Scholar
  19. [19]
    Bradley, P. M. and F. H. Chapelle (2000) Aerobic microbial mineralization of dichloroethene as sole carbon source.Environ. Sci. Technol. 34: 221–223.CrossRefGoogle Scholar
  20. [20]
    Coleman, N. V., T. E. Mattes, J. M. Gossett, and J. C. Spain (2002) Biodegradation ofcis-dichloroethene as the sole carbon source by a β-proteobacterium.Appl. Environ. Microbiol. 68: 2726–2730.CrossRefGoogle Scholar
  21. [21]
    Olaniran, A. O., D. Pillay, and B. Pillay (2004) Aerobic dechlorination ofcis- andtrans-dichloroethenes by some indigenous bacteria isolated from contaminated sites in Atrica.J. Environ. Sci. 16: 968–972.Google Scholar
  22. [22]
    Bouwer, E. J. (1994) Bioremediation of chlorinated solvents using alternate electron acceptors. pp. 149–175 In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, I. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.):Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  23. [25]
    McCarty, P. L. and L. Semprini (1994) Groundwater treatment for chlorinated solvents. pp. 87–116. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C. Borden, T. M. Vogel, J. M. Thomas and C. H. Ward (eds.):Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  24. [24]
    Vogel, T. M. (1994) Natural bioremediation of chlorinated solvents, pp. 201–225. In: R. D. Norris, R. E. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer R. C. Borden, T. M. Vogel, J. M. Thomas, and C. H. Ward (eds.):Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  25. [25]
    Olaniran, A. O., A. I. Okoh, S. Ajisebutu, P. Golyshin, and G. O. Babalola (2002) The aerobic dechlorination activities of two bacterial species isolated from a refuse dumpsite in Nigeria.Int. Microbiol. 5: 21–24.CrossRefGoogle Scholar
  26. [26]
    Olaniran, A. O., D. Pillay, and B. Pillay (2004) Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities.Chemosphere 55: 27–33.CrossRefGoogle Scholar
  27. [27]
    Hartmans, S., A. Kaptein, J. Tramper, and J. A. M. de Bont (1992) Characterization of aMycobacterium sp. and aXanthomonas sp. for the removal of vinyl chloride and 1,2-dichloroethane from waste gases.Appl. Microbiol. Biotechnol. 37: 796–801.CrossRefGoogle Scholar
  28. [28]
    Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, D. Dymock, and W. G. Wade (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA.Appl. Environ. Microbiol. 64: 795–799.Google Scholar
  29. [29]
    Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res. 25: 3389–3402.CrossRefGoogle Scholar
  30. [30]
    Seeley, H. W. and P. J. Vandemark (1981)Microbes in Action. A Laboratory Manual of Microbiology. 3rd ed., WH Freeman and Company, New York, NY, USA.Google Scholar
  31. [31]
    Gerhardt, P., R. Murray, R. Costilow, E. Nester, W. Wood, N. Krieg, and G. B. Phillips (1991)Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, USA.Google Scholar
  32. [32]
    Alexander, M. and K. M. Snow (1989) Reactions and movements of organic chemicals in soils. pp. 243–269. In: B. L. Sawhney and K. Brown (eds.): Soil Science Society of America, Madison, WI, USA.Google Scholar
  33. [33]
    LaGrega, M. D., P. L. Buckingham, and J. C. Evans (1994) Growth kinetics. pp. 581. In: B. J. Clark and J. M. Morris (eds.):Hazardous Waste Management. McGraw-Hill, Inc., New York, NY, USA.Google Scholar
  34. [34]
    Bergmann, J. G. and J. Sanik (1957) Determination of trace amounts of chlorine in naphtha.Anal. Chem. 29: 241–243.CrossRefGoogle Scholar
  35. [35]
    Ensign, S. A., M. R. Hyman, and D. J. Arp (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grownXanthobacter strain.Appl. Environ. Microbiol. 58: 3038–3046.Google Scholar
  36. [36]
    Van Hylckama Vlieg, J. E. T., W. de Koning, and D. B. Janssen (1996) Transformation kinetics of chlorinated ethenes byMethylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography.Appl. Environ. Microbiol. 62: 3304–3312.Google Scholar
  37. [37]
    Van Hylckama Vlieg, J. E. T., J. Kingma, A. J. van den Wijngaard, and D. B. Janssen (1998) A glutathioneS-transferase with activity towardscis-dichloroepoxyethane is involved in isoprene utilization byRhodococcus sp. strain AD45.Appl. Environ. Microbiol. 64: 2800–2805.Google Scholar
  38. [38]
    Koziollek, P., D. Bryniok, and H. J. Knackmuss (1999) Ethene as an auxiliary substrate for the cooxidation ofcis-dichloroethene and vinyl chloride.Arch. Microbiol. 172: 240–246.CrossRefGoogle Scholar
  39. [39]
    Dolfing, J., A. J. van den Wijngaard, and D. B. Janssen (1993) Microbiological aspects of the removal of chlorinated hydrocarbons from air.Biodegradation 4: 261–282.CrossRefGoogle Scholar
  40. [40]
    Anzai, Y., H. Kim, J. Y. Park, H. Wakabayashi, and H. Oyaizu (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence.Int. J. Syst. Evol. Microbiol. 50: 1563–1589.Google Scholar
  41. [41]
    Flynn, S. J., F. E. Loffler, and J. M. Tiedje (2000) Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination ofcis-DCE and VC.Environ. Sci. Technol. 34: 1056–1061.CrossRefGoogle Scholar
  42. [42]
    Sutherland, T. D., I. Horne, M. J. Lacey, R. L. Harcouri, R. J. Russell, and J. G. Oakeshott (2000) Enrichment of an endosulfan-degrading mixed bacterial culture.Appl. Environ. Microbiol. 66: 2822–2828.CrossRefGoogle Scholar
  43. [43]
    Park, H. S., S. J. Lim, Y. K. Chang, A. G. Livingstone, and H. S. Kim (1999) Degradation of chloronitrobenzenes by a coculture ofPseudomonas putida and aRhodococcus sp.Appl. Environ. Microbiol. 65: 1083–1091.Google Scholar
  44. [44]
    Alvey, S. and D. E. Crowley (1996) Survival and activity of an atrazine-mineralizing bacterial consortium in rhizesphere soil.Environ. Sci. Technol. 30: 1596–1603.CrossRefGoogle Scholar
  45. [45]
    Katsivela, E., D. Bonse, A. Krueger, C. Stroempl, A. Livingstone, and R. M. Wittich (1999) An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial waste water.Appl. Microbiol. Biotechnol. 52: 853–862.CrossRefGoogle Scholar
  46. [46]
    Ralebits, T. K., E. Senior, and H. W. van Verseveld (2002) Microbial aspects of atrazine degradation in natural environments.Biodegradation 13: 11–19.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2006

Authors and Affiliations

  • Ademola O. Olaniran
    • 1
    • 3
  • Nokukhanya H. Mfumo
    • 1
  • Dorsamy Pillay
    • 1
    • 2
  • Balakrishna Pillay
    • 1
  1. 1.Department of Microbiology, Faculty of Science and AgricultureUniversity of KwaZulu-NatalDurbanRepublic of South Africa
  2. 2.Department of Biotechnology, Faculty of Engineering, Science and Built EnvironmentDurban Institute of TechnologyDurbanRepublic of South Africa
  3. 3.Department of Microbiology, Faculty of ScienceObafemi Awolowo UniversityIlle-IfeNigeria

Personalised recommendations