Biohydrogen production from carbon monoxide and water byRhodopseudomonas palustris P4

  • You-Kwan Oh
  • Yu-Jin Kim
  • Ji-Young Park
  • Tae Ho Lee
  • Mi-Sun Kim
  • Sunghoon Park


A reactor-scale hydrogen (H2) productionvia the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium,Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic H2 production step. Important parameters investigated included the agitation speed, inlet CO concentration and gas retention time. P4 showed a stable H2 production capability with a maximum activity of 41 mmol H2 g cell−1h−1 during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol H2 L1h−1, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteriaRhodospirillum rubrum andRubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific H2 production activity. This study indicates that P4 has an outstanding potential for a continuous H2 productionvia the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.


hydrogen production carbon monoxide water-gas shift reaction Rhodopseudomonas palustris two-step process 


  1. [1]
    Barik, S., R. E. Corder, Clausen, E. C., and J. L. Gaddy (1987) Biological conversion of coal synthesis gas to methane.Energy Prog. 7: 157–160.Google Scholar
  2. [2]
    Liu, Z.-W., K.-W. Jun, H.-S. Rho, and S.-E. Park (2002) Hydrogen production for fuel cells through methane reforming at low temperatures.J. Power Sources 111: 283–287.CrossRefGoogle Scholar
  3. [3]
    Ferry, J. G. (1995) CO dehydrogenase,Annu. Rev. Microbiol. 49: 305–333.CrossRefGoogle Scholar
  4. [4]
    Jung, G. Y., H. O. Jung, J. R. Kim, Y. Ahn, and S. Park (1999) Isolation and characterization ofRhodopseudomonas palustris P4 which utilizes CO with the production of H2.Biotechnol. Lett. 21: 525–529.CrossRefGoogle Scholar
  5. [5]
    Klasson, K. T., K. M. O. Lundback, E. C. Clausen, and J. L. Gaddy (1993) Kinetics of light limited growth and biological hydrogen production from carbon monoxide and water byRhodospirillum rubrum.J. Biotechnol. 29: 177–188CrossRefGoogle Scholar
  6. [6]
    Uffen, R. L. (1976) Anaerobic growth ofRhodopseudomonas species in the dark with carbon monoxide and energy substrate.Proc. Natl. Acad. Sci. USA 73: 3298–3302.CrossRefGoogle Scholar
  7. [7]
    Bhatnagar, L., J. A. Krzycki, and J. G. Zeikus (1987) Analysis of hydrogen metabolism inMethanosarcina barkeri: Regulation and role of CO-dehydrogenase in H2 production.FEMS Microbiol. Lett. 41: 337–343.CrossRefGoogle Scholar
  8. [8]
    Wolfrum, E. J. and A. S. Watt (2002) Bioreactor design studies for a hydrogen-producing bacterium.Appl. Biochem. Biotechnol. 99: 611–625.CrossRefGoogle Scholar
  9. [9]
    Cowger, J. P., K. T. Klasson, M. D. Ackerson, E. C. Clausen, and J. L. Gaddy (1992) Mass-transfer and kinetic aspects in continuous bioreactors usingRhodospirillum rubrum.Appl. Biochem. Biotechnol. 34/35: 613–624.CrossRefGoogle Scholar
  10. [10]
    Wolfrum. E. J. and P. F. Weaver (1999) Bioreactor development for biological hydrogen production.Proceedings of the 1999 US DOE Hydrogen Program Review (NREL/CP-570-26938).Google Scholar
  11. [11]
    Lee, T. H., J.-Y. Park and S. Park (2002) Growth ofRhodopseudomonas palustris under phototrophic and non-phototrophic conditions and its CO-dependent H2 production.Biotechnol. Lett. 24: 91–96.CrossRefGoogle Scholar
  12. [12]
    Oh, Y.-K., E.-H. Seol, E. Y. Lee, and S. Park (2002) Fermentative hydrogen production by a new chemoheterotrophic bacteriumRhodopseudomonas palustris P4.Int. J. Hydrogen Energy 27: 1373–1379.CrossRefGoogle Scholar
  13. [13]
    Oh, Y.-K., E.-H. Seol, M.-S. Kim, and S. Park (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacteriumRhodopseudomonas palustris P4.Int. J. Hydrogen Energy 29: 1115–1121.Google Scholar
  14. [14]
    Jung, G. Y., J. R. Kim, H. O. Jung, J.-Y. Park, and S. Park (1999) A new chemoheterotrophic bacterium catalyzing water-gas shift reaction.Biotechnol. Lett. 21: 869–873.CrossRefGoogle Scholar
  15. [15]
    Jung, G. Y., J. R. Kim, J.-Y. Park, and S. Park (2002) Hydrogen production by a new chemoheterotrophic bacteriumCitrobacter sp. Y19.Int. J. Hydrogen Energy 27: 601–610.CrossRefGoogle Scholar
  16. [16]
    Oh, Y.-K., E.-H. Seol, J. R. Kim, and S. Park (2003) Fermentative biohydrogen production by a new chemoheterotrophic bacteriumCitrobacter sp. Y19.Int. J. Hydrogen energy 28: 1353–1359.CrossRefGoogle Scholar
  17. [17]
    Kim, J. R., Y.-K. Oh, Y. J. Yoon, E. Y. Lee, and S. Park (2003) Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity inCitrobacter sp.J. Microbiol. Biotechnol. 13: 717–724.Google Scholar
  18. [18]
    Masuko, T., A. Minami, N. Iwasaki, T. Majima, S. Nishimura, and Y. C. Lee (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format.Anal. Biochem. 339: 69–72.CrossRefGoogle Scholar
  19. [19]
    Oh, Y.-K., M. S. Park, E.-H. Seol, S.-J Lee, and S. Park (2003) Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor.Biotechnol. Bioprocess Eng. 8: 54–57.CrossRefGoogle Scholar
  20. [20]
    Oh, Y.-K., Y.-J. Kim, Y. Ahn, S.-K. Song, and S. Park (2004) Color removal of real textile wastewater by sequential anaerobic and aerobic reactors.Biotechnol. Bioprocess Eng. 9: 419–422.CrossRefGoogle Scholar
  21. [21]
    Lee, E. Y., J. M. Kang, and S. Park (2003) Evaluation of transformation capacity for degradation of ethylene chlorides byMethylosinus trichosporium OB3b.Biotechnol. Bioprocess Eng. 8: 309–312.CrossRefGoogle Scholar
  22. [22]
    He, Y., T. Gaal, R. Karls, T. J. Donohue, R. L. Gourse, and G. P. Roberts (1999) Transcription activation by CooA. the CO-sensing factor fromRhodospirillum rubrum. The interaction between CooA and the C-terminal domain of the a subunit of RNA polymerase.J. Biol. Chem. 274: 10840–10845.CrossRefGoogle Scholar
  23. [23]
    Maness, P.-C. and P. F. Weaver (2001) Evidence for three distinet hydrogenase activities inRhodospirillum rubrum.Appl. Microbiol. Biotechnol. 57: 751–756.CrossRefGoogle Scholar
  24. [24]
    Larimer, F. W., P. Chain, L. Hauser, J. Lamerdin, S. Malfatti, L. Do, M. L. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. T. Torres, C. Peres, F. H. Harrison, J. Gibson, and C. S. Harwood (2004) Complete genome sequence of the metabolically versatile photosynthetic bacteriumRhodopsendomonas palustris.Nature Biotechnol. 22: 55–61.CrossRefGoogle Scholar
  25. [25]
    Klasson, K. T., A. Gupta, E. C. Clausen, and J. L. Gaddy (1993) Evaluation of mass-transfer and kinetic parameters forRhodospirillum rubrum in a continuous stirred tank reactor.Appl. Biochem. Biotechnol. 39/40: 549–557.CrossRefGoogle Scholar
  26. [26]
    Bredwell, M. D., P. Srivastava, and R. M. Worden (1990) Reactor design issues for synthesis-gas fermentations.Biotechnol. Prog. 15: 834–844.CrossRefGoogle Scholar
  27. [27]
    He, Y., D. Shelver, R. L. Kerby, and G. P. Roberts (1996) Characterization of a CO-responsive transcriptional activator fromRhodospirillum rubrum.I. Biol. Chem. 271: 120–123.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • You-Kwan Oh
    • 1
    • 2
  • Yu-Jin Kim
    • 1
    • 2
  • Ji-Young Park
    • 2
  • Tae Ho Lee
    • 2
  • Mi-Sun Kim
    • 3
  • Sunghoon Park
    • 1
    • 2
  1. 1.Department of Chemical EngineeringPusan National UniversityPusanKorea
  2. 2.Institute for Environmental Technology and IndustryPusan National UniversityPusanKorea
  3. 3.Biomass Research TeamKorea Institute of Energy ResearchDaejeonKorea

Personalised recommendations