Advertisement

Enhancement of analyte ionization in desoprtion/ionization on porous silicon (DIOS)-mass spectrometry (MS)

  • Chang-Soo Lee
  • Eun-Mi Kim
  • Sang-Ho Lee
  • Min-Soo Kim
  • Yong-Kweon Kim
  • Byug-Gee Kim
Article

Abstract

Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a relatively new laser desorption/ionization technique for mass spectrometry without employing an organic matrix. This present study was carried to survey the experimental factors to improve the efficiency of DIOS-MS through electrochemical etching condition in structure and morphological properties of the porous silicon. The porous structure of silicon structure and its properties are crucial for the better performance of DIOS-MS and they can be controlled by the suitable selection of electrochemical conditions. The fabrication of porous silicon and ion signals on DIOS-MS were examined as a function of silicon orientation, etching time, etchant, current flux, irradiation, pore size, and pore depth. We have also examined the effect of pre- and post-etching conditions for their effect on DIOS-MS. Finally, we could optimize the electrochemical conditions for the efficient performance of DIOS-MS in the analysis of small molecule such as amino acid, drug and peptides without any unknown noise or fragmentation.

Keywords

porous silicon desorption/ionization on silicon (DIOS) matrix assisted laser desorption/ionization (MALDI) small molecule analysis 

References

  1. [1]
    Cullis, A. G., L. T. Canham, and P. D. J. Calcott (1997) The structural and luminescence properties of porous silicon.J. Appl. Physics 82: 909–965.CrossRefGoogle Scholar
  2. [2]
    Brus, L. (1994) Luminescence of silicon materials-chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon.J. Phys. Chem. 98: 3575–3581.CrossRefGoogle Scholar
  3. [3]
    Sailor, M. J. and E. J. Lee (1997) Surface chemistry of luminescent silicon nanocrystallites.Adv. Materials 9: 783-&.CrossRefGoogle Scholar
  4. [4]
    Lin, V. S., Y. K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri (1997) A porous silicon-based optical interferometric biosensor.Science 278: 840–843.CrossRefGoogle Scholar
  5. [5]
    Wei, J., J. M. Buriak, and G. Siuzdak (1999) Desorption-ionization mass spectrometry on porous silicon.Nature 399: 243–246.CrossRefGoogle Scholar
  6. [6]
    Tuomikoski, S., K. Huikko, K. Grigoras, P. Ostman, R. Kostiainen, M. Baumann, J. Abian, T. Kotiaho, and S. Franssila (2002) Preparation of porous n-type silicon sample plates for desorption/ionization on silicon mass spectrometry (DIOS-MS).Lab on a Chip 2: 247–253.CrossRefGoogle Scholar
  7. [7]
    Go, E. P., J. E. Prenni, J. Wei, A. Jones, S. C. Hall, H. E. Witkowska, Z. X. Shen, and G. Siuzdak (2003) Desorption/ionization on silicon time-of-flight/time-of-flight mass spectrometry.Anal. Chem. 75: 2504–2506.CrossRefGoogle Scholar
  8. [8]
    Cohen, S. L. and B. T. Chait (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins.Anal. Chem. 68: 31–37.CrossRefGoogle Scholar
  9. [9]
    Westman, A., T. Huthfehre, P. Demirev, and B. U. R. Sundqvist (1995) Sample morphology effects in matrix-assisted laser-desorption ionization mass-spectrometry of proteins.J. Mass Spectrometry 30: 206–211.CrossRefGoogle Scholar
  10. [10]
    Garden, R. W. and J. V. Sweedler (2000) Heterogeneity within MALDI samples as revealed by mass spectrometric imaging.Anal. Chem. 72: 30–36.CrossRefGoogle Scholar
  11. [11]
    Stewart, M. P. and J. M. Buriak (2000) Chemical and biological applications of porous silicon technology.Adv. Materials 12: 859–869.CrossRefGoogle Scholar
  12. [12]
    Shen, Z. X., J. J. Thomas, C. Averbuj, K. M. Broo, M. Engelhard, J. E. Crowell, M. G. Finn, and G. Siuzdak (2001) Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry.Anal. Chem. 73: 612–619.CrossRefGoogle Scholar
  13. [13]
    Lee, J. Y., J. J. Kim, and T. H. Park (2003) Miniaturization of polymerase chain reaction.Biotechnol. Bioprocess Eng. 8: 213–220.CrossRefGoogle Scholar
  14. [14]
    Li, C., W. C. Lee, and K. H. Lee (2003) Affinity separations using microfabricated microfluidic devices:In situ photopolymerization and use in protein separations.Biotechnol. Bioprocess Eng. 8: 240–245.CrossRefGoogle Scholar
  15. [15]
    Park, S. S., H. S. Joo, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim (2003) Multi-step reactions on microchip platform using nitrocellulose membrane reactor.Biotechnol. Bioprocess Eng. 8: 257–262.CrossRefGoogle Scholar
  16. [16]
    Cuiffi, J. D., D. J. Hayes, S. J. Fonash, K. N. Brown, and A. D. Jones (2001) Desorption-ionization mass spectrometry using deposited nanostructured silicon films.Anal. Chem. 73: 1292–1295.CrossRefGoogle Scholar
  17. [17]
    Christophersen, M., J. Cartensen, and H. Foll (2000) Macropore formation on highly doped n-type silicon.Physica Status Solidia Applied Research 182: 45–50.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Chang-Soo Lee
    • 1
  • Eun-Mi Kim
    • 2
  • Sang-Ho Lee
    • 3
  • Min-Soo Kim
    • 3
  • Yong-Kweon Kim
    • 3
  • Byug-Gee Kim
    • 2
  1. 1.Department of Chemical EngineeringChungnam National UniversityDaejeonKorea
  2. 2.School of Chemical Engineering and Institute of Molecular Biology and GeneticsSeoul National UniversitySeoulKorea
  3. 3.School of Electrical Engineering and Computer ScienceSeoul National UniversitySeoulKorea

Personalised recommendations