Biotechnology and Bioprocess Engineering

, Volume 6, Issue 4, pp 269–273 | Cite as

Enhancing transfection efficiency using polyethylene glycol grafted polyethylenimine and fusogenic peptide

  • Haeshin Lee
  • Ji Hoon Jeong
  • Je Hoon Lee
  • Tae Gwan Park


This study presents a new formulation method for improving DNA transfection efficiency using a fusogenic peptide and polyethylene glycol grafted polyethylenimine. Succinimidyl succinate polyethylene glycol (PEG-SSA) was conjugated with polyethylenimine (PEI). PEI is well known for a good endosomal escaping and DNA condensing agent. The positively charged synthetic fusogenic peptide, KALA, was coated on the negatively charged PEG-g-PEI/DNA and PEI/DNA complexes. The KALA/PEI/DNA complexes exhibited aggregation behavior at higher KALA coating amounts with an effective diameter of around 1,000 nm. However, the KALA/PEG-g-PEI/DNA complexes were 100–300 nm in size with a surface zeta-potential (ζ) value of about +20 mV. The conjugated PEG molecules suppressed any KALA-mediated inter-particle aggregation, and thereby improved the transfection efficiency. Consequently, the transfection efficiency of the KALA/PEG-g-PEI/DNA complexes was obtained by utilizing both the fusogenic activity of KALA and the steric repulsion effect of PEC.


KALA polyethylene glycol (PEG) polyethylenimine (PEI) a DNA delivery system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Felgner, P. L., Y. Barenholz, J.-P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. C. Szoka, A. R. Thierry, E. Wagner, and G. Wu (1997) Nomenclature for synthetic gene delivery systems.Human Gene Ther. 8: 511–512.CrossRefGoogle Scholar
  2. [2]
    Cotton, M. and E. Wagner (1993) Non-viral approaches to gene therapy.Current Op. Biotech. 4: 705–710.CrossRefGoogle Scholar
  3. [3]
    Ledley, F. (1994) Non-viral gene therapy.Current Op. Biotech. 5: 626–636.CrossRefGoogle Scholar
  4. [4]
    Wolfert, M. A. and L. W. Seymour (1998) Chlroroquine and amphipathic peptide helices show synergistic transfection in vitro.Human Gene Ther. 5: 409–414.Google Scholar
  5. [5]
    Wagner E. (1999) Application of membrane-active peptides for nonviral gene delivery.Adv. Drug Del. Rev. 38: 279–289.CrossRefGoogle Scholar
  6. [6]
    Zaunter, W., M. Ogris, and E. Wagner (1998) Polylysinebased transfection systems utilizing receptor-mediated delivery.Adv. Drug Del. Rev. 30: 97–113.CrossRefGoogle Scholar
  7. [7]
    Remy, J. S., B. Adballah, M. A. Zanta, O. Boussif, J. P. Behr, and B. Demeneix (1998) Gene transfer with lipospermines and polyethyleneimines.Adv. Drug Delivery Rev. 30: 85–95.CrossRefGoogle Scholar
  8. [8]
    Zauner, J. and E. C. Szoka (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture.Bioconjugate Chem. 4: 372–379.CrossRefGoogle Scholar
  9. [9]
    Cherng, J. Y., P. V. D. Wetering, H. Talsma, D. J. A. Crommelin, and W. E. Hennink (1996) Effect of size and serum proteins on transfection efficiency of poly-((2-dimethylamino)-ethyl methacrylate)-plasmid nanoparticles.Pharm. Res. 13: 1038–1042.CrossRefGoogle Scholar
  10. [10]
    Cherng, J. Y., P. V. D. Wetering, H. Talsma, D. J. A. Crommelin, and W. E. Hennink (1997) Freeze-drying of poly-((2-dimethylamino)-ethyl methacrylate)-based gene delivery systems.Pharm. Res. 14: 1838–1841.CrossRefGoogle Scholar
  11. [11]
    Wetering, P. V. D., J. Y. Cherng, H. Talsma, and W. E. Hennink (1997) Relation between transfection efficiency and cytotoxicity of poly poly-((2-dimethylamino)-ethyl methacrylate)-plasmid complex.J. Controlled Release 49: 59–69.CrossRefGoogle Scholar
  12. [12]
    Boussif, O., E. Lezoualc'h, M. A. Zanta, M D. Mergny, D. Scherman, B. Demeneix, and J.-P. Behr (1995) A versatile vector for gene and oligonnucleotide transfer into cells in culture and in vivo: polyethylenimine.Proc. Natl. Acad. Sci. USA 92: 7297–7301.CrossRefGoogle Scholar
  13. [13]
    Ogris, M., P. Steinlein, and M. Kursa (1998) The size of DNA/transferring-PEI complexes is an important factor for gene expression in cultured cells.Gene Ther. 5: 1425–1433.CrossRefGoogle Scholar
  14. [14]
    Plank, C., B. Oberhauser, K. Mechtler, C. Koch, and E. Wagner (1994) The influence of endosome-distruptive peptides on gene transfer using synthetic virus-like gene transfer system.J. Biol. Chem. 269: 12918–12924.Google Scholar
  15. [15]
    Hart, S. L., L. Collins, K. Gustafsson, and J. W. Fabre (1997) Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains.Gene Ther. 4: 1225–1230.CrossRefGoogle Scholar
  16. [16]
    Niidome, T., N. Ohmori, and A. Ichinose (1997) Binding of cationic a-helical peptides to plasmid DNA and their gene transfer abilities into cells.J. Biol. Chem. 272: 15307–15312.CrossRefGoogle Scholar
  17. [17]
    Sorgi, F. L., S. Bhattacharya, and L. Huang (1997) Protamine sulfate enhances lipid-mediated gene transfer.Gene Ther. 4: 961–968.CrossRefGoogle Scholar
  18. [18]
    Wyman, T. B., F. Nicol, O. Zephalti, P. V. Scaria, C. Plank, and F. C. Szoka (1997) Design, Synthesis, and Characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers.Biochemistry 36: 3008–3017.CrossRefGoogle Scholar
  19. [19]
    Fominaya, J., M. Gasset, R. Garcia, F. Roncal, J. P. Albar, and A. Bernad (2000) An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector.J. Gene Med. 2: 455–464.CrossRefGoogle Scholar
  20. [20]
    Lim, D. W., Y. I. Yeom, and T. G. Park (2000) Poly-(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes.Bioconjugate Chem. 11: 688–695.CrossRefGoogle Scholar
  21. [21]
    Lee, H., J. H. Jeong, and T. G. Park (2001) A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptides. J. Controlled Rel. in press.Google Scholar
  22. [22]
    Fischer, D., R. Zange, and T. Kissel (1997) Comparative in vitro cytotoxicity studies of polycations for gene therapy.Proceedings of 24th Intern. Symp. Control. Rel. Bioact. Mater. pp. 647–648.Google Scholar
  23. [23]
    Fischer, D., T. Bieber, Y. X. Li, H. P. Elsasser, and T. Kissel (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethyleimine: Effect of molecular weight on transfection dfficiency and cytotoxicity.Pharm. Res. 16: 1273–1279.CrossRefGoogle Scholar
  24. [24]
    Ferrari, S., E. Moro, A. Pettenazzo, J.-P. Behr, F. Zacchello, and M. Scarpa (1997) ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo.Gene Ther. 4: 1100–1106.CrossRefGoogle Scholar
  25. [25]
    Fischer, D., Y. X. Li, A. von Harpe, T. Bieber, H. P. Elsasser, and T. Kissel (1999) Poly(ethyleimine-co-2-hydroxyethyl ethylenimine) polymers: Relation between polymer structure, biocompatibility and transfection efficiency.Proceeding of 26th Intern. Symp. Control. Rel. Bioact. Mater. pp. 104–105.Google Scholar
  26. [26]
    Jeong, J. H., S. H. Song, D. W. Lim, H. Lee, and T. G. Park (2001) DNA Transfection Using Linear Poly(ethylenemine) Prepared by Controlled Acid Hydrolysis of Poly(2-ethyl-2-oxazoline).J. Controlled Rel. 6: 391–399.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2001

Authors and Affiliations

  • Haeshin Lee
    • 1
  • Ji Hoon Jeong
    • 1
  • Je Hoon Lee
    • 1
  • Tae Gwan Park
    • 1
  1. 1.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations